Indeterminacy in Stochastic Overlapping Generations Models: Real Effects in the Long Run*

Zhigang Feng†
University of Illinois at Urbana-Champaign

Matthew Hoelle‡
Purdue University

September 18, 2015

Abstract

Indeterminate equilibria are known to exist for overlapping generations models, though recent research has been limited to deterministic settings in which all equilibria converge to a steady state in the long run. This paper analyzes stochastic overlapping generations models with 3-period lived representative consumers and adopts a novel computational algorithm to numerically approximate the entire set of competitive equilibria. In a stochastic setting with incomplete markets, indeterminacy has real effects in the long run. Our numerical simulations reveal that indeterminacy is an order of magnitude more important than endowment shocks in explaining long-run consumption and asset price volatility.

Key words: OLG, Indeterminacy, Markov, Computation, Simulation.
JEL Code: C63, D52, D91, E21

* This paper was previously circulated under the title "Indeterminacy and Asset Price Volatility in Stochastic Overlapping Generations Models" by Zhigang Feng and Matthew Hoelle and under the title "Numerical Simulation of the Overlapping Generations Models with Indeterminacy" by Zhigang Feng. We are grateful to Felix Kubler, Udara Peiris, conference participants at Arizona State, and seminar participants at ICEF (Moscow) and the University of Miami for comments and feedback. Zhigang Feng thanks David Levine, Manuel Santos, and Karl Schmedders for valuable comments on the earlier version of the paper, and acknowledges financial support from NCCR-FINRISK. Please cite as Krannert Working Paper Series, Paper No. 1272.

† Department of Economics, University of Illinois at Urbana-Champaign, 1407 W. Gregory, Urbana, Illinois 61801. E-mail: z.feng2@gmail.com

‡ Department of Economics, Purdue University, 403 W. State Street, West Lafayette, IN 47907. E-mail: mhoelle@purdue.edu
1 Introduction

Stochastic versions of the overlapping generations model of Allais (1947) and Samuelson (1958) can be useful models for macroeconomic policy making, but not before the theoretical and quantitative implications of indeterminacy are properly accounted for. In deterministic versions of the model, indeterminacy may exist, but it has no effects in the long run as all equilibria converge to one of the steady states. This paper considers stochastic versions of the model and decomposes indeterminacy into two types: one characterized by the initial conditions and one characterized by incomplete financial markets. We introduce a numerical algorithm to compute the entire set of competitive equilibrium. We use simulations to approximate the volatility of consumption across cohorts and the volatility of asset prices. Our findings show that in incomplete markets indeterminacy has long-run effects and is an order of magnitude more important than endowment shocks in explaining long-run consumption and asset price volatility.

In deterministic overlapping generations (OLG) models, a sufficient condition for a determinate equilibrium is the property of gross substitution in consumption. This property was empirically refuted by Mankiw, Rotemberg and Summers (1985). In the same setting, Spear, Srivastava, and Woodford (1990) and Wang (1993) have conjectured that even if the equilibrium set is indeterminate, all equilibria in that set converge in the long run to one of the steady states. This conjecture has been numerically verified for a handful of canonical economies in Kehoe and Levine (1990) and Feng (2013), where the former log-linearized the equilibrium system of equations and the latter numerically approximated the entire equilibrium set.

In stochastic overlapping generations (SOLG) models, the properties of existence and Pareto inefficiency of recursive equilibria have been analyzed in Citanna and Siconolfi (2010) and Henriksen and Spear (2012), respectively. However, very little is known about indeterminacy in SOLG models. Several papers have provided examples showing the existence of a continuum of recursive (stationary Markov) equilibria (Farmer and Woodford, 1997; Spear, Srivastava, and Woodford, 1990), but conditions for either the existence or nonexistence of indeterminacy are unavailable. The present paper focuses on the indeterminacy of competitive equilibria and studies its impact on the aggregate

2 See Kehoe and Levine (1990), Spear, Srivastava, and Woodford (1990), Wang (1993), and Feng (2013).
4 Gomis-Porqueras and Haro (2003, 2007) introduced techniques to characterize all equilibrium manifolds, but their method cannot extend to the stochastic models considered in the present paper.
5 Citanna and Siconolfi (2010) proves generic existence of recursive equilibria, a complement to the non-existence examples provided in Kubler and Polemarchakis (2004). Henriksen and Spear (2012) proves that even with the same number of short-term assets as states, the markets are not sequentially complete in a recursive equilibrium, and the resulting recursive equilibrium allocation is not Pareto efficient. This complements Demange (2002), which shows that if markets are sequentially complete, then the recursive equilibrium allocations are Pareto efficient.
economy, specifically on the consumption and asset price volatility.

In deterministic OLG models, indeterminacy arises whenever a continuum of initial period variables are consistent with equilibrium. Those variables are typically asset prices or portfolio choices, though this paper looks at shadow prices of investment. If the set of initial period variables is determinate, then the equilibrium set is determinate. If there is a continuum of initial period variables, then there is a continuum of equilibria, where each equilibrium is indexed by the vector of initial period variables. Feng (2013) characterizes the entire set of initial period variables consistent with equilibrium and demonstrates that each numerically approximated equilibrium converges to one of the steady states. Although the equilibrium set is indeterminate, there are no effects in the long run.

This paper considers a SOLG model and characterizes two types of indeterminacy: initial condition indeterminacy and incomplete markets indeterminacy. Initial condition indeterminacy is identical to the indeterminacy described in deterministic settings and is indexed by the variables in the initial period. Incomplete markets indeterminacy is a new type of indeterminacy that arises in stochastic settings with incomplete markets. Long-run effects only occur in the presence of incomplete markets indeterminacy.

Consider a simple incomplete markets setting with a 3-period lived consumer born every period, a risk-free bond (1 asset), and 2 states of uncertainty each period. The 3 periods of a consumer’s life are denoted young, middle-aged, and old. The equilibrium variables consist of the vector of asset prices and portfolio choices. In any node, only two consumers participate in the bond market: the young and the middle-aged. By market clearing, we only consider the portfolio choice of the middle-aged. An equilibrium is characterized by Euler equations for the young and middle-aged (recall we already internalized the market clearing condition). We use the Euler equations for the middle-aged to determine the portfolio choice of the middle-aged. An equilibrium is written in the form

\[
ee_y \left(q \left(s_0 \right), (q \left(s_0, s_1 \right))_{s_1 \in \{1, 2\}} \right) = 0.
\]

\[
\ee_y \left(q \left(s_0, s_1 \right), (q \left(s_0, s_1, s_2 \right))_{s_2 \in \{1, 2\}} \right) = 0 \quad \text{for} \quad s_1 \in \{1, 2\}.
\]

These equations are in terms of 7 asset price variables, 1 for each node in periods \(t = 0\) through \(t = 2\).

As we can see, the number of variables exceeds the number of equations. This captures the dimension of the initial condition indeterminacy. If we denote \(S\) as the
number of states of uncertainty each period and \(J \) as the number of assets, there are \(J(1 + S) \) equations and \(J(1 + S + S^2) \) asset price variables, implying \(JS^2 \) degrees of freedom. In the deterministic case, \(S = J = 1 \), there exists 1 degree of freedom, which is consistent with what Kehoe and Levine (1990) would find for a real asset economy. A real asset is one whose payouts are in terms of the commodity. The analogous economy considered in Kehoe and Levine (1990) fixes the initial endowment of the nominal asset (money) and finds 1 degree of freedom.

As stressed above, the presence of this form of indeterminacy in a stochastic setting is not novel, but merely an extension of the indeterminacy analyzed by Kehoe and Levine (1990) for the case of real assets. Magill and Quinzii (2003) analyze indeterminacy in stochastic OLG models, but consider nominal asset economies with 2-period lived consumers. In such a model, the analysis only captures the notion of nominal indeterminacy. Kehoe and Levine (1990) consider a deterministic setting with nominal assets and 3-period lived consumers. In such a setting, both nominal and real indeterminacy can arise. We restrict ourselves to an analysis of real indeterminacy by only including real assets in a stochastic OLG model with 3-period lived consumers. Including nominal assets in a stochastic setting with 3-period lived consumers, a more faithful extensions of Kehoe and Levine (1990), would lead to even greater indeterminacy than what we find in the present paper.

Continuing with our example, the progression to a new node in period \(t \geq 2 \) introduces 3 Euler equation for the newborn young, but 2 of these are period \(t + 1 \) middle-aged Euler equations, which are used to determine the 2 middle-aged bond choices in period \(t + 1 \). There is then just 1 new equation, the Euler equation in period \(t \) for the newborn young, together with 2 new asset price variables, 1 for each of the 2 nodes that can arise in period \(t + 1 \):

\[
eeq_g \left(q \left(s_0, ..., s_t \right), \left(q \left(s_0, ..., s_t, s_{t+1} \right) \right)_{s_{t+1} \in \{1,2\}} \right) = 0.
\]

With 2 new variables and only 1 new equation, there exists 1 degree of freedom. Using the previous notation, each new node introduces \(J \) new Euler equations and \(SJ \) new asset price variables, implying \(J(S - 1) \) degrees of freedom. In the deterministic case, \(S = J = 1 \), there are 0 degrees of freedom, consisting with the findings in Kehoe and Levine (1990) and Feng (2013). When \(S = J \), there exist \(S(S - 1) \) degrees of freedom, which is consistent with the findings from Henriksen and Spear (2012) for the \(S = J = 2 \) case.

\[6\]Our asset structure is most similar to the asset structures in Citanna and Siconolfi (2010) and Henriksen and Spear (2012), who analyze the properties of existence (of recursive equilibrium) and Pareto efficiency, respectively.

\[7\]In stochastic OLG settings with consumers living for at least 3 periods, the concept of complete and incomplete markets is more complicated than simply counting the number of assets relative to the possible states of uncertainty in the subsequent period. Even with \(J = S \) assets, the asset structure is not complete in the sense that it is unable to support a dynamically Pareto efficient allocation in equilibrium (see Henriksen and Spear, 2012). There are several ways to modify the asset structure in order to complete the markets. Henriksen and Spear (2012) suggest adding a complete set of Arrow
Our objective in this paper is not only to determine the conditions under which incomplete markets indeterminacy arises, but also to numerically estimate the equilibrium set and determine the effects of such indeterminacy on simulated time paths of equilibrium variables.

Formally, incomplete markets indeterminacy is present when the dimension of the image of the equilibrium transition correspondence is strictly positive. With such an equilibrium correspondence, there exists a continuum of next-period state variables that are consistent with equilibrium. This form of indeterminacy is closely related to the concept of initial condition indeterminacy that occurs in the deterministic setting. If we consider the vector of variables in any period t, some of the variables are state variables chosen in period $t - 1$ and others are determined by the policy correspondence (in terms of the state variables). When you analogize period t state variables to the initial conditions (period $t = 0$) and the period t policy variables to the initial period variables (period $t = 0$), then, by definition, indeterminacy in period t is only possible if it was possible in the initial period. We have defined initial condition indeterminacy to capture this latter effect, making it a necessary condition for incomplete markets indeterminacy.

Our main theoretical result show that initial condition indeterminacy and incomplete markets are sufficient conditions for incomplete markets indeterminacy (and hence long-run effects).

The fact that incomplete markets indeterminacy exists is of limited importance unless it is combined with an estimation of the effects of this indeterminacy. We apply the numerical method developed by Feng (2013) to numerically approximate the entire set of competitive equilibrium. In economies with initial condition indeterminacy and incomplete markets, incomplete markets indeterminacy is present, meaning that there exists a continuum of continuation values consistent with equilibrium. In our numerical simulations, we adopt a consistent means to select continuation values from this continuum. We consider a variety of different selection rules, where we run each simulation using a consistent selection rule throughout. The choice of the selection rule has real effects, so we are thorough in considering all possible selection rules. Half the selection rules minimize the difference between consecutive period variable realizations, while the other half maximize such differences.

In each simulation, we generate a simulated vector of equilibrium variables over time. We are particularly interested in two simulated moments: consumption volatility and asset price volatility. The consumption volatility is the standard deviation of consumption across cohorts (holding fixed the age of consumption). The asset price volatility is the standard deviation of asset prices across time. Our initial findings

securities traded subject to a self-financing condition (zero net expenditures across all Arrow securities). In the context of our analysis, we conjecture that a complete asset structure as in Henriksen and Spear (2012) would remove both types of indeterminacy analyzed in this paper. This conjecture lies outside the scope of the present paper and is left for future research. The analysis of incomplete markets in the present paper is more pressing, as the conditions for complete markets are quite restrictive and unlikely to be observed in reality.
reveal that both of these simulated volatility measures are an order of magnitude larger than what is predicted from the endowment volatility alone. Further, when we compute the simulated consumption volatilities after conditioning on the shock realization, we find that the conditional consumption volatilities are on average more than 90% as large as the unconditional volatilities.

Next, we numerically approximate the equilibrium set in a sunspot economy. The sunspot economy is identical to our original economy, except that the states of uncertainty are now states of extrinsic uncertainty, meaning that the endowments are independent of the shock realization. As before, we generate simulated vectors of equilibrium variables and compute the simulated consumption and asset price volatilities. For both variables, the simulated volatilities for the sunspot economy are on average more than 90% as large as the simulated volatilities in the original economy with endowment risk.

Our interpretation is to attribute any volatility in equilibrium variables that cannot be explained by fundamentals to the effects of indeterminacy. Our numerical results suggest that indeterminacy is an order of magnitude more important in explaining consumption and asset price volatility than endowment risk.

The remainder of the paper is organized as follows. Section 2 introduces the model and defines the competitive equilibrium concept. Section 3 introduces an equivalent recursive formulation called Markov equilibrium, which is important for subsequent computation and simulation. Sections 4 applies the computational algorithm and presents the simulation results. Section 5 concludes, and the Appendix contains the proofs of our main results and further details on the algorithm.

2 The Economic Model

In this section, we first introduce the economic environment and then provide the competitive equilibrium definition.

2.1 Economic environment

Time is discrete $t = 0, 1, 2, \ldots$ At every date t, a new cohort of consumers enters the economy. Each cohort consists of a representative consumer that remains in the economy for 3 periods.

At every date t, the economy is hit by a shock s. The shock follows a Markov chain over a finite set $S = \{1, \ldots, S\}$ as described by the Markov transition matrix Π with elements $\pi(s, \sigma)$ for all $s, \sigma \in S$. The observed shock in period t is s_t. The initial shock s_0 is known to all consumers in the economy. The history of shocks up to and including period t is $s^t = (s_0, s_1, \ldots, s_t)$. The history of shocks uniquely characterizes the location of the economy in the space of time and uncertainty, and is often called a date-event or node. We use the notation $(s^t, \sigma)_{\sigma \in S}$ to refer to the set of nodes that immediately succeed the node s^t and the notation $(s^t, \sigma, \sigma')_{\sigma, \sigma' \in S^2}$ to refer to the set of nodes that
follow 2 periods after the node s^t.

At each node, a single consumption good is traded.

The consumers are identified by the node at birth and the age $a \in \{0, 1, 2\}$ in the current node. The parameter $e_a(s^{t+a})$ is the endowment of a consumer of age a in node s^{t+a}. This means that the consumer was born in node s^t. A consumer’s individual endowments follow a Markov process governed by the stationary function $e : \{0, 1, 2\} \times S \rightarrow \mathbb{R}_{++}$, such that for all $a \in \{0, 1, 2\}$ and all nodes s^t, $e_a(s^{t+a}) = e_a(s_{t+a})$.

Similarly, the variable $c_a(s^{t+a})$ is the consumption of a consumer of age a in node s^{t+a}.

In the initial node s_0, there exists an age $a = 0$ consumer, an age $a = 1$ consumer, and an age $a = 2$ consumer. The age $a = 2$ consumer has the consumption $c_2(s_0)$ and utility function $u(c_2(s_0))$. The age $a = 1$ consumer has the consumption vector $(c_1(s_0), (c_2(s_0, \sigma))_{\sigma \in S})$ and utility function

$$u(c_1(s_0)) + \beta \sum_{\sigma \in S} \pi(s_0, \sigma) u(c_2(s_0, \sigma)).$$

For a consumer born in node s^t, define the lifetime contingent consumption vector as $c(s^t) = \left(c_0(s^t), (c_1(s^t, \sigma))_{\sigma \in S}, (c_2(s^t, \sigma, \sigma'))_{(\sigma, \sigma') \in S^2}\right) \in \mathbb{R}_{++}^{1+S+S^2}$. The consumer preferences are assumed to be identical and are represented by the time-separable utility function $U : \mathbb{R}_{++}^{1+S+S^2} \rightarrow \mathbb{R} \cup \{-\infty\}$ defined as

$$U(c(s^t)) = u(c_0(s^t)) + \beta \sum_{\sigma \in S} \pi(s_t, \sigma) u(c_1(s^t, \sigma))$$

$$+ \beta^2 \sum_{\sigma, \sigma' \in S^2} \pi(s_t, \sigma) \pi(\sigma, \sigma') u(c_2(s^t, \sigma, \sigma')).$$

The one-period utility u satisfies the following conditions:

Assumption 1. The one-period utility function $u : \mathbb{R}_{++} \rightarrow \mathbb{R} \cup \{-\infty\}$ is C^2, differentiably strictly increasing (i.e., $u_c(c) > 0 \ \forall c > 0$), differentiably strictly concave (i.e., $u_{cc}(c) < 0 \ \forall c > 0$), and satisfies the Inada condition (i.e., $\lim_{c \rightarrow 0} u_c(c) = +\infty$).

For each node s^t, there exist J short-lived numeraire assets with fixed payouts in terms of the consumption good. The J assets are indexed by a superscript $j \in J = \{1, ..., J\}$. The equilibrium price of asset j in node s^t is denoted $q^j(s^t)$. The prices for all assets traded in node s^t are collected in the row vector $q(s^t) = (q^j(s^t))_{j \in J}$.

The asset payouts follow a Markov chain such that the payouts in the nodes $(s^t, \sigma)_{\sigma \in S}$ for the asset j traded in node s^t are given by the column vector $r^j = (r^j(\sigma))_{\sigma \in S}$. Additionally, define $r(\sigma) = (r^j(\sigma))_{j \in J}$ as the row vector of portfolio payouts for the current shock σ. The asset payouts can be collected into the $S \times J$ payout matrix

$$R = (r^1, ..., r^J) = (r(\sigma))_{\sigma \in S}.$$
Assumption 2. The payout matrix is a non-negative and full rank matrix.

Let $\theta_a^j(s^t)$ denote the amount of asset j purchased by a consumer of age a in node s^t. The assets pay out in the following period, specifically in the nodes $(s^t, \sigma)_{\sigma \in S}$. The column vector $\theta_a^j(s^t) = (\theta_a^j(s^t))_{j \in J}$ contains the entire portfolio of all assets positions of the consumer of age a in node s^t. The payout of the portfolio in node (s^t, σ) is $r(\sigma)\theta_a(s^t)$.

In the initial node s_0, the age $a = 1$ consumer and the age $a = 2$ consumer both enter the period with a portfolio of assets from a previous (unmodeled) period. We can refer to this previous (unmodeled) period as period $t = -1$. The portfolios carried into the initial node s_0 are parameters of the model. The portfolio for the age $a = 1$ consumer in node s_0 is denoted $\theta_0(-1) = (\theta_0^j(-1))_{j \in J}$, as an age $a = 1$ consumer in node s_0 would have age $a = 0$ in the previous (unmodeled) period $t = -1$. Likewise, the portfolio for the age $a = 2$ consumer in node s_0 is denoted $\theta_1(-1) = (\theta_1^j(-1))_{j \in J}$, as an age $a = 2$ consumer in node s_0 would have age $a = 1$ in the previous (unmodeled) period $t = -1$.

Market clearing for assets traded in node s^t is given by:

$$
\sum_{a=0}^{2} \theta_a^j(s^t) = 0 \forall j \in J.
$$

For any given $\theta_1(-1)$ and $q(s_0)$, the household problem for the age $a = 2$ consumer in the initial node s_0 is given by:

$$
\max_{c_2(s_0)} u(c_2(s_0)) \\
\text{subj. to } c_2(s_0) + q(s_0)\theta_2(s_0) \leq e_2(s_0) + r(s_0)\theta_1(-1).
$$

For any given $\theta_0(-1)$ and $(q(s_0), (q(s_0, \sigma))_{\sigma \in S})$, the household problem for the age $a = 1$ consumer in the initial node s_0 is given by:

$$
\max_{c_1(s_0), \theta_1(s_0), (c_2(s_0, \sigma))_{\sigma \in S}} u(c_1(s_0)) + \beta \sum_{\sigma \in S} \pi(s_0, \sigma) u(c_2(s_0, \sigma)) \\
\text{subj. to } c_1(s_0) + q(s_0)\theta_1(s_0) \leq e_1(s_0) + r(s_0)\theta_0(-1), \\
q_2(s_0, \sigma) + q(s_0, \sigma)\theta_2(s_0, \sigma) \leq e_2(\sigma) + r(\sigma)\theta_1(s_0) \forall \sigma \in S.
$$

For simplicity, define $\theta(s^t) = (\theta_0(s^t), (\theta_1(s^t, \sigma))_{\sigma \in S}) \in \mathbb{R}^{J(1+S)}$ as the entire vector of lifetime contingent portfolios for a consumer born in node s^t. Given asset prices $(q(s^t), (q(s^t, \sigma))_{\sigma \in S}, (q(s^t, \sigma, \sigma'))_{\sigma, \sigma' \in S})$, the household problem for a consumer born in node s^t is given by:

$$
\max_{c(s^t), \theta(s^t)} U(c(s^t)) \\
\text{subj. to } c_0(s^t) + q(s^t)\theta_0(s^t) \leq e_0(s_t), \\
c_1(s^t, \sigma) + q(s^t, \sigma)\theta_1(s^t, \sigma) \leq e_1(\sigma) + r(\sigma)\theta_0(s^t) \forall \sigma \in S, \\
c_2(s^t, \sigma, \sigma') + q(s^t, \sigma, \sigma')\theta_2(s^t, \sigma, \sigma') \leq e_2(\sigma') + r(\sigma')\theta_1(s^t, \sigma) \forall (\sigma, \sigma') \in S^2
$$

(1)
2.2 Equilibrium

We define a sequential competitive equilibrium (SCE) as follows.

Definition 1. A SCE is a collection of prices and choices of consumers \(\{q(s^t), \theta(s^t), c(s^t)\} \) such that:

(i) For each \(s^t \), taking as given the prices \((q(s^t), (q(s^t, \sigma))_{\sigma \in S}, (q(s^t, \sigma', \sigma))_{\sigma, \sigma' \in S}) \), a consumer born in \(s^t \) solves (1).

(ii) Commodity market clearing for each \(s^t \):
\[
\sum_{a=0}^{2} c_a(s^t) = \sum_{a=0}^{2} e_a(s^t). \tag{2}
\]

(iii) Asset market clearing for each \(s^t \):
\[
\sum_{a=0}^{2} \theta_a(s^t) = 0. \tag{3}
\]

The existence of a SCE can be verified using standard methods (e.g., Balasko and Shell, 1980; Schmachtenberg, 1988). Moreover, Balasko and Shell (1980) and Schmachtenberg (1988) prove that every sequence of equilibrium asset prices \(\{q(s^t)\} \) is bounded.

Under Assumption 1, the equilibrium asset holdings \(\theta_2(s^t) = 0 \) in all date-events. In all date-events, the old-age consumers will not carry asset holdings into the future. In the (unmodeled) period \(t = -1 \), young-age and middle-age consumers receive the portfolios that they carry into the initial period \(t = 0 \). The young-age consumers in period \(t = -1 \) are middle-age consumers in period \(t = 0 \) and the middle-age consumers in period \(t = -1 \) are old-age consumers in period \(t = 0 \). Market clearing must hold for the (unmodeled) period \(t = -1 \), meaning that the parameters \(\theta_0(-1) \) and \(\theta_1(-1) \) must satisfy:
\[
\theta_0^j(-1) + \theta_1^j(-1) = 0 \quad \forall j \in J.
\]

3 Recursive equilibrium and indeterminacy

In this paper, we characterize the entire set of recursive (Markov) equilibrium in SOLG by adopting the methodology of Feng (2013). We then identify the existence of indeterminacy by examining the set of recursive equilibrium. In the next section, we also study the impact of indeterminacy on long-run economy by simulating the models.

3.1 Recursive equilibrium

First, we will economize on notation. Recall that market clearing in any node \(s^t \) is such that \(\theta_0(s^t) = -\theta_1(s^t) \). Define the portfolio payout for the age \(a = 2 \) consumer in node \(s^t \) as \(\omega(s^t) = r(s_t) \theta_1(s^{t-1}) \in \mathbb{R} \). This implies that the portfolio payout for the
consumer \(a = 1 \) consumer in node \(s^t \) is \(-\omega(s^t) \). Using these facts, we can rewrite the budget constraints faced by all consumers alive in node \(s^t \):

\[
\begin{align*}
c_0(s^t) - q(s^t)\theta_1(s^t) &\leq e_0(s_t), \\
c_1(s^t) + q(s^t)\theta_1(s^t) &\leq e_1(s_t) - \omega(s^t), \\
c_2(s^t) &\leq e_2(s_t) + \omega(s^t).
\end{align*}
\]

One can define the recursive equilibrium on the natural state space consisting of the current shock \(s_t \), and the portfolio payout \(\omega(s^t) \). However, as shown in Kubler and Polemarchakis (2004), such equilibrium may not exist. To restore the recursive formulation of SCE, Feng et al. (2014) enlarge the state space by considering the shadow values of investment as an additional state variable. They also develop an iterative procedure to characterize the recursive equilibrium on this enlarged state space.

In line with Feng et al. (2014), the state variables we consider include the current shock \(s_t \), and the portfolio payout \(\omega(s^t) \), and the shadow values of investment \(m(s^t) = (m^j(s^t))_{j \in J} \) for the age \(a = 1 \) consumer in the current node:

\[
m^j(s^t) = q^j(s^t)u_c(c_1(s^t)).
\]

Denote the state space as \(S \times \mathbb{R} \times \mathbb{R}_+^J \) with typical element \((s, \omega, m) \in S \times \mathbb{R} \times \mathbb{R}_+^J\). The policy function is defined as \(f : S \times \mathbb{R} \times \mathbb{R}_+^J \to \mathbb{R} \times \mathbb{R}_+^J \) such that \((q, \theta_1) = f(s, \omega, m)\) satisfies the following equations:

\[
\begin{align*}
m^j &= q^j u_c [e_1(s) - q \theta_1 - \omega] \quad \forall j \in J, \\
m^j &= \beta \sum_{\sigma \in S} \pi(s, \sigma) u_c [e_2(\sigma) + r(\sigma) \theta_1] r^j(\sigma) \quad \forall j \in J,
\end{align*}
\]

where equation (8) is the definition of the shadow value of investment, and (9) represents the Euler equation for the consumer of age \(a = 1 \).\(^8\)

The expectations correspondence \(g : S \times \mathbb{R} \times \mathbb{R}_+^J \to (\mathbb{R} \times \mathbb{R}_+^J)^S \) is a mapping from the current period state variables \((s, \omega, m)\) to the next period state variables \((\omega'(\sigma), m'(\sigma))_{\sigma \in S}\), where \((\omega'(\sigma), m'(\sigma)) \in \mathbb{R} \times \mathbb{R}_+^J \forall \sigma \in S\). By definition,

\[
(\omega'(\sigma), m'(\sigma))_{\sigma \in S} \in g(s, \omega, m)
\]

iff for \((q, \theta_1) = f(s, \omega, m)\) and \((q'(\sigma), \theta'_1(\sigma)) = f(\sigma, \omega'(\sigma), m'(\sigma)) \forall \sigma \in S\) the following conditions are satisfied:

\[
\begin{align*}
\omega'(\sigma) &= r(\sigma) \theta_1 \quad \forall \sigma \in S, \\
q^j u_c [e_0(s) + q \theta_1] &= \beta \sum_{\sigma \in S} \pi(s, \sigma) \frac{m^j(\sigma)}{q^j(\sigma)} r^j(\sigma) \quad \forall j \in J,
\end{align*}
\]

where equation (10) is the definition of the portfolio payout, and (11) represents the Euler equation for the consumer of age \(a = 0 \).

\(^8\) Additionally, define the projections \(f_q : S \times \mathbb{R} \times \mathbb{R}_+^J \to \mathbb{R}_+^J \) and \(f_\theta : S \times \mathbb{R} \times \mathbb{R}_+^J \to \mathbb{R}^J \).
Definition 2. Recursive equilibrium is defined by the policy correspondence $V^* : S \times \mathbb{R} \Rightarrow \mathbb{R}_+^J$ and the transition correspondence $F : \text{graph}(V^*) \Rightarrow \left(\mathbb{R} \times \mathbb{R}_+^J \right)^S$ satisfying the following two properties:

1. For all $(s, \omega, m) \in \text{graph}(V^*)$, $F(s, \omega, m) \subseteq g(s, \omega, m)$.
2. For all $(s, \omega, m) \in \text{graph}(V^*)$ and all $\sigma \in S$, $(\sigma, F_\sigma(s, \omega, m)) \subseteq \text{graph}(V^*)$, where $F_\sigma : \text{graph}(V^*) \Rightarrow \mathbb{R} \times \mathbb{R}_+^J$ is the projection onto the shock σ state variables.

We refer to V^* as the Markov equilibrium policy correspondence and F as the Markov equilibrium transition correspondence.

Theorem 1. A Markov equilibrium is a SCE.

Proof. See Section 6.1. \hfill \Box

Theorem 2. A Markov equilibrium exists.

Proof. See Section 6.2. \hfill \Box

3.2 Indeterminacy

Given the Markov equilibrium policy correspondence V^* and transition correspondence F, the entire sequence of SCE for a given vector of initial conditions can be determined. The initial conditions are $s_0 \in S$, $\theta_1(-1) \in \mathbb{R}^J$, and $m(s_0) \in \mathbb{R}_+^J$. While both s_0 and $\theta_1(-1)$ are parameters of the model, the shadow prices $m(s_0) \in V^*(s_0, r(s_0) \theta_1(-1))$ are endogenous state variables.

- In period $t = 0$, given $\omega(s_0) = r(s_0) \theta_1(-1)$, the vector
 $$ (q(s_0), \theta_1(s_0)) = f(s_0, \omega(s_0), m(s_0)) $$
 is determined as the unique solution to equations (8) and (9). The variables $\omega(s_0, \sigma), m(s_0, \sigma))_{\sigma \in S} \in F(s_0, \omega(s_0), m(s_0))$ must be consistent with the transition correspondence.

- In period $t > 0$, given $(s_t, \omega(s^t), m(s^t))$, the vector
 $$ (q(s^t), \theta_1(s^t)) = f(s_t, \omega(s^t), m(s^t)) $$
 is determined as the unique solution to equations (8) and (9). The variables $\omega(s^t, \sigma), m(s^t, \sigma))_{\sigma \in S} \in F(s_t, \omega(s^t), m(s^t))$ must be consistent with the transition correspondence.

From the above discussion, we find that there are two types of indeterminacy: (i) initial condition indeterminacy and (ii) incomplete markets indeterminacy.
Definition 3. Initial condition indeterminacy occurs if \(\dim(V^*(s, \omega)) > 0 \) for some \((s, \omega) \in S \times \mathbb{R} \).

Initial condition indeterminacy is indexed by \(m(s_0) \in V^*(s_0, \omega(s_0)) \), meaning that if the image of \(V^* \) is determinate, initial condition indeterminacy does not arise.

Definition 4. Incomplete markets indeterminacy occurs if \(\dim(F(s, \omega, m)) > 0 \) for some \((s, \omega, m) \in S \times \mathbb{R} \times \mathbb{R}_J^+ \).

We term this incomplete markets indeterminacy, because an incomplete market structure is a necessary condition for this type of indeterminacy. When the market structure is complete, meaning that sufficient assets exist to support a dynamically Pareto efficient allocation, then, by definition, there exists a unique vector of continuation values for the state variables in every period. This confirms that incomplete markets is necessary.\(^9\)

Theorem 3. Incomplete markets is a necessary condition for incomplete markets indeterminacy.

In any period \(t > 0 \), we can interpret the state variables \((s_t, \omega(s_t)) \) as the initial conditions and \(m(s_t) \) as the variables determined from the policy correspondence. A continuum of equilibrium values requires that the image of the policy correspondence is indeterminate, but this is the same as the definition of initial condition indeterminacy: \(\dim(V^*(s, \omega)) > 0 \) for some \((s, \omega) \in S \times \mathbb{R} \). By definition, initial condition indeterminacy must be necessary.

Theorem 4. Initial condition indeterminacy is a necessary condition for incomplete markets indeterminacy.

Our main theoretical result shows that both of these properties, incomplete markets and initial condition indeterminacy, are sufficient conditions for incomplete markets indeterminacy.

Theorem 5. An economy with initial condition indeterminacy and incomplete markets will also have incomplete markets indeterminacy.

\[\text{Proof. See Section 6.3.} \]

\(^9\)As stressed in Henriksen and Spear (2012), in an overlapping generations setting with households living for at least 3 periods, economies with the same number of assets and states of uncertainty each period \((S = J) \) do not have a complete markets structure as it is not possible (generically) to support a dynamically Pareto efficient allocation in equilibrium.
4 Computation and Simulation

Knowing that an economy exhibits incomplete markets indeterminacy is of limited use for welfare analysis. In this section, we consider a stochastic economy with incomplete markets and conduct numerical analysis to approximate the long-run effects of incomplete markets indeterminacy. To approximate the long-run effects, we use the methodological contribution in Feng (2013) and Feng et al. (2014) to compute a numerical approximation of the Markov equilibrium correspondences.

4.1 Numerical specifications

We consider an economy with one asset \(J = 1 \) and two states of uncertainty \(S = 2 \). There is an exogenous shock that affects the endowments of the household. Given the shock realization, the endowment of the age \(a = 2 \) consumer changes, while the other endowments remain unchanged. Specifically, we assume that

\[
\begin{align*}
e_0(s) &= 3 & \forall s \in \{1, 2\} \\
e_1(s) &= 12 & \forall s \in \{1, 2\} \\
e_2(1) &= 1 + \epsilon & \epsilon = 0.05 \\
e_2(2) &= 1 - \epsilon
\end{align*}
\]

The transition matrix that governs the Markov chain is given by

\[
\Pi = \begin{bmatrix} 0.95 & 0.05 \\ 0.05 & 0.95 \end{bmatrix}.
\]

The utility function is given by: \(u(c) = \frac{c^{1-b-1}}{1-b} \), where the coefficient of relative risk aversion is \(b = 4 \). We set the discount factor \(\beta = 0.5 \).

We borrow these parameter values from Kehoe and Levine (1990), which provides greater details on the justification of the parameters values chosen for the economy. To summarize their justification, let one period represent 20 years, meaning that the discount factor of \(\beta = 0.5 \) corresponds to an annual discount factor of \(0.966 = 0.5^{\frac{1}{20}} \). The risk aversion parameter \(b \) implies an intertemporal elasticity of substitution of 0.25. This is similar to the value chosen by Auerbach and Kotlikoff (1987). The life-cycle earnings profile of the household is hump-shaped as in Gourinchas and Parker (2002).

The asset is a real bond with payouts equal to 1 for both states \(s \in S \). The initial conditions of the economy are the initial period shock \(s_0 \), the initial period bond payout \(\omega(s_0) = \theta_1(-1) \), and the initial shadow value of investment \(m(s_0) \).

4.2 Convergence results

We apply the numerical algorithm detailed in Feng (2013) to approximate the Markov equilibrium policy correspondence \(V^* \). The numerical approximation will be
termed the Markov policy correspondence $V : \mathcal{S} \times \Theta \Rightarrow \mathbb{R}_+$, where $\Theta \subseteq \mathbb{R}$ is the compact set of portfolio payouts for consumers of age $a = 1$. Such a set is known to exist since the set of SCE variables is contained in a compact set.

We iterate the algorithm until the Euler equation residuals are bounded above by some small error bound $\epsilon > 0$. Specifically, the Markov policy correspondence $V : \mathcal{S} \times \Theta \Rightarrow \mathbb{R}_+$ is defined such that for any $m \in V(s, \omega)$, there exists a vector of variables $(q, \theta, (\omega'(\sigma), m'(\sigma))_{\sigma \in \mathcal{S}})$ satisfying (8) and (10) with the Euler equation residuals from (9) and (11) bounded above by ϵ. For the numerical examples we consider, we are able to compute the Markov policy correspondence V for any arbitrarily small value $\epsilon > 0$. Citing Theorems 2 and 3 from Feng et al. (2014), the operator B is such that the fixed point V of our numerical approximation converges uniformly to the Markov equilibrium policy correspondence V^* as a function of the discrete partition of the state space. Further details about the discrete version of the operator B and the numerical algorithm are contained in the Appendix.

4.3 Discussion of incomplete markets indeterminacy

For this numerical verification, we first compute the Markov policy correspondence V, which is the numerical approximation to the Markov equilibrium policy correspondence V^*. Given the Markov policy correspondence V, the Markov transition correspondence $F : graph(V) \Rightarrow (\mathbb{R} \times \mathbb{R}_+)^{\mathcal{S}}$ is approximated such that the equations (10) and (11) are satisfied (the latter with residuals bounded above by ϵ).

Figure 1 in the Appendix contains the graph of the Markov transition correspondence F. Specifically, it contains the variables $(s, \omega, m, (m'(\sigma))_{\sigma \in \mathcal{S}})$ (for both possible shocks $s \in \{1, 2\}$, using the fact that ω is independent of the shock realization s) such that

$$(\omega'(\sigma), m'(\sigma))_{\sigma \in \mathcal{S}} \in F(s, \omega, m),$$

where $\omega'(\sigma) = f_{\theta}(s, \omega, m)$. This numerical approximation includes Euler equation residuals bounded above by $\epsilon > 0$ for any arbitrarily small ϵ. If the observed incomplete markets indeterminacy is simply a result of numerical error, then we should observe that the graphs in Figure 1 are affected by changes in the errors bound ϵ and the mesh size of the discretization. Our numerical experiments show that the graphs in Figure 1 do not change once we reach a certain level of precision, namely an error bound $\epsilon = 10^{-10}$ and mesh size equal to 10^{-6}. Applying Proposition 2 from Feng (2013) and Theorem 5 from this paper, we are able to numerically confirm that the economy exhibits incomplete markets indeterminacy.

Consider the right panel of Figure 1 in the Appendix, which displays the cross-section of the image of the Markov transition correspondence for both possible shocks $s \in \{1, 2\}$. For both shocks $s \in \{1, 2\}$, the possible values for the next period shadow values of investment $(m'(\sigma))_{\sigma \in \{1, 2\}}$ belong to a continuum. The dimension of the image of the Markov transition correspondence equals 1.
4.4 Simulation

As discussed in section 3.2, we choose the variables \((\omega(s^t, \sigma), m(s^t, \sigma))_{\sigma \in \mathcal{S}}\) that are consistent with the transition correspondence \(F(s_t, \omega(s^t), m(s^t))\) for given \((s_t, \omega(s^t), m(s^t))\) at each node of the economy. Indeterminacy implies that there exists more than one vector \((\omega(s^t, \sigma), m(s^t, \sigma))_{\sigma \in \mathcal{S}}\) consistent with \(F(s_t, \omega(s^t), m(s^t))\). Consider Figure 1 in the Appendix. All shadow values \((m'(\sigma))_{\sigma \in \{1, 2\}}\) on the curve in the right panel of Figure 1 are consistent with equilibrium. Hence, our numerical simulations consider different selection rules that pick one particular vector \((\omega(s^t, \sigma), m(s^t, \sigma))_{\sigma \in \mathcal{S}}\). The selection rules specify certain properties that the continuation variables must satisfy, and these properties are held constant for the entire length of that simulation. For each selection rule, we simulate the economy over a sufficiently long time horizon to determine our simulated moments (means and standard deviations).

The selection rules are intended to provide the extreme selections consistent with equilibrium. By analyzing extremes, we aim to find an upper and lower bound for the effects of indeterminacy on volatility.

The 8 selection rules that we employ are:

1. Maximize difference in asset prices

The state variables in the current period are given by \((s, \omega, m)\). There exists a unique vector \((q, \theta_1) = f(s, \omega, m)\) satisfying (8) and (9), where the latter is satisfied up to the precision \(\epsilon\). This implies that \(\omega'(\sigma) = \theta_1\) for both states \(\sigma \in \{1, 2\}\). The state variables \((m'(\sigma))_{\sigma \in \mathcal{S}}\) must be chosen such that \((\omega'(\sigma), m'(\sigma))_{\sigma \in \mathcal{S}} \in F(s, \omega, m)\). There exists a continuum of values \((m'(\sigma))_{\sigma \in \mathcal{S}}\), specifically a 1-dimensional subset of possible values. Given \((\sigma, \omega'(\sigma), m'(\sigma))\), there exists a unique vector \((q'(\sigma), \theta'_1(\sigma))\) satisfying (8) and (9), where the latter is satisfied up to the precision \(\epsilon\).

If \(\hat{\sigma}\) is the realization of the shock, the value for \(m'(\hat{\sigma})\) is chosen such that \((m'(\hat{\sigma}))_{\sigma \in \mathcal{S}}\) belongs to that 1-dimensional subset from Figure 1 and the difference \(|q'(\hat{\sigma}) - q|\) is maximized.

2. Minimize difference in asset prices.

3. Maximize difference in bond holdings, i.e., the difference \(|\theta'_1(\hat{\sigma}) - \theta_1|\) is maximized for the randomly selected shock \(\hat{\sigma}\).

4. Minimize difference in bond holdings.

5. Maximize difference in young consumption, i.e., the difference

\[|e_0(s) + q \theta_1 - (e_0(\hat{\sigma}) + q'(\hat{\sigma}) \theta'_1(\hat{\sigma}))|\]

is maximized for the randomly selected shock \(\hat{\sigma}\).

6. Minimize difference in young consumption.
7. Maximize difference in middle-age consumption, i.e., the difference
\[
|e_1(s) - q\theta_1 - \omega - (e_1(\hat{\sigma}) - q'(\hat{\sigma})\theta'_1(\hat{\sigma}) - \omega'(\hat{\sigma}))|
\]
is maximized for the randomly selected shock \(\hat{\sigma}\).

8. Minimize difference in middle-age consumption.

Notice that we do not consider selections with respect to the old-age consumption variable. Old-age consumption for the randomly selected shock \(\hat{\sigma}\) is \(e_2(\hat{\sigma}) + \theta_1\). Indeterminacy does not play a role in this value, as the only element that depends upon \(\hat{\sigma}\) is the endowment parameter \(e_2(\hat{\sigma})\).

4.5 Simulation results

We choose the initial conditions so that \(\theta_1(-1) = 3.0\) and the initial shock is \(s_0 = 2\), meaning \(e_2(s_0) = 1 - \epsilon\). The initial shadow value of investment is \(m_0 = 5.50\), where \(m_0 \in V(s_0, \theta_1(-1))\).\(^{10}\) Simulations last for 5,000 periods, where the first 1,000 periods are ignored when computing simulated moments and simulated conditional moments.

4.5.1 Effects of the selection rules

We run simulations under each of the 8 selection rules introduced previously. The unconditional moments are reported in Tables 1 and 2 below. The first observation from the data is that the choice of selection rule matters and has real effects. Among all 8 selection rules, the young consumption mean is smallest (\(\text{mean}(c_0) = 5.862\)) and the middle consumption mean is largest (\(\text{mean}(c_1) = 5.308\)) for the selection rule that maximizes the difference in bond holdings. Diametrically, among all 8 selection rules, the young consumption mean is largest (\(\text{mean}(c_0) = 6.037\)) and the middle consumption mean is smallest (\(\text{mean}(c_1) = 5.293\)) for the selection rule that minimizes the difference in bond holdings. The means for the young consumption can differ by as much as 3% and the means for middle consumption can differ by as much as 0.3%.

Comparing the simulation in which the asset price difference is maximized and the simulation in which the asset price difference is minimized, the average lifetime utility for the consumers is 3.96% higher under the latter, which corresponds to a consumption equivalent gain of 1.3%.

\(^{10}\)We perform robustness checks on the choice of initial conditions and find that this choice has no long run effects. Further details can be found in Subsection 4.5.3.
Table 1: Simulated means

<table>
<thead>
<tr>
<th>Simulation</th>
<th>(\text{mean}(c_0))</th>
<th>(\text{mean}(c_1))</th>
<th>(\text{mean}(\theta_1))</th>
<th>(\text{mean}(q))</th>
<th>(\text{mean}(U))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max (\Delta q)</td>
<td>6.025</td>
<td>5.286</td>
<td>3.690</td>
<td>0.842</td>
<td>-0.0072</td>
</tr>
<tr>
<td>Min (\Delta q)</td>
<td>6.026</td>
<td>5.295</td>
<td>3.680</td>
<td>0.828</td>
<td>-0.0071</td>
</tr>
<tr>
<td>Max (\Delta \theta_1)</td>
<td>5.862</td>
<td>5.308</td>
<td>3.831</td>
<td>0.769</td>
<td>-0.0071</td>
</tr>
<tr>
<td>Min (\Delta \theta_1)</td>
<td>6.037</td>
<td>5.293</td>
<td>3.670</td>
<td>0.833</td>
<td>-0.0071</td>
</tr>
<tr>
<td>Max (\Delta c_0)</td>
<td>5.926</td>
<td>5.305</td>
<td>3.769</td>
<td>0.798</td>
<td>-0.0071</td>
</tr>
<tr>
<td>Min (\Delta c_0)</td>
<td>6.030</td>
<td>5.294</td>
<td>3.677</td>
<td>0.830</td>
<td>-0.0071</td>
</tr>
<tr>
<td>Max (\Delta c_1)</td>
<td>5.896</td>
<td>5.304</td>
<td>3.800</td>
<td>0.784</td>
<td>-0.0071</td>
</tr>
<tr>
<td>Min (\Delta c_1)</td>
<td>6.029</td>
<td>5.294</td>
<td>3.677</td>
<td>0.830</td>
<td>-0.0071</td>
</tr>
</tbody>
</table>

Table 2: Simulated standard deviations

<table>
<thead>
<tr>
<th>Simulation</th>
<th>(\text{std}(c_0))</th>
<th>(\text{std}(c_1))</th>
<th>(\text{std}(\theta_1))</th>
<th>(\text{std}(q))</th>
<th>(\text{std}(U))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max (\Delta q)</td>
<td>0.431</td>
<td>0.176</td>
<td>0.403</td>
<td>0.226</td>
<td>(9 \times 10^{-4})</td>
</tr>
<tr>
<td>Min (\Delta q)</td>
<td>0.214</td>
<td>0.072</td>
<td>0.209</td>
<td>0.102</td>
<td>(3 \times 10^{-4})</td>
</tr>
<tr>
<td>Max (\Delta \theta_1)</td>
<td>0.474</td>
<td>0.168</td>
<td>0.475</td>
<td>0.195</td>
<td>(5 \times 10^{-4})</td>
</tr>
<tr>
<td>Min (\Delta \theta_1)</td>
<td>0.200</td>
<td>0.069</td>
<td>0.191</td>
<td>0.102</td>
<td>(3 \times 10^{-4})</td>
</tr>
<tr>
<td>Max (\Delta c_0)</td>
<td>0.469</td>
<td>0.153</td>
<td>0.464</td>
<td>0.194</td>
<td>(5 \times 10^{-4})</td>
</tr>
<tr>
<td>Min (\Delta c_0)</td>
<td>0.224</td>
<td>0.082</td>
<td>0.215</td>
<td>0.115</td>
<td>(4 \times 10^{-4})</td>
</tr>
<tr>
<td>Max (\Delta c_1)</td>
<td>0.457</td>
<td>0.166</td>
<td>0.452</td>
<td>0.194</td>
<td>(5 \times 10^{-4})</td>
</tr>
<tr>
<td>Min (\Delta c_1)</td>
<td>0.226</td>
<td>0.078</td>
<td>0.215</td>
<td>0.115</td>
<td>(4 \times 10^{-4})</td>
</tr>
</tbody>
</table>

4.5.2 Consumption volatility

Table 3 reports the simulated standard deviations conditional on either shock \(s = 1\) or shock \(s = 2\) being realized.

To assess the volatility of the young-age consumption (for age \(a = 0\) consumers), consider the 6 simulations that did not include young-age consumption \(c_0(\tilde{\sigma}) = e_0(\tilde{\sigma}) + q'(\tilde{\sigma})\theta_1'(\tilde{\sigma})\) in the objective function. Computing the averages across these 6 simulations and both potential shocks \(s \in \{1, 2\}\), the conditional standard deviations for \(c_0\) are 92% as large as their respective unconditional standard deviations.

To assess the volatility of the middle-age consumption (for age \(a = 1\) consumers), consider the 6 simulations that did not include middle-age consumption \(c_1(\tilde{\sigma}) = e_1(\tilde{\sigma}) - q'(\tilde{\sigma})\theta_1'(\tilde{\sigma}) - \omega'(\tilde{\sigma})\) in the objective function. Computing the averages across these 6 simulations and both potential shocks \(s \in \{1, 2\}\), the conditional standard deviations for \(c_1\) are 94% as large as their respective unconditional standard deviations.
Table 3: Simulated standard deviations (conditional)

<table>
<thead>
<tr>
<th></th>
<th>Shock $s = 1$</th>
<th></th>
<th>Shock $s = 2$</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>simulation</td>
<td>$\text{std}(c_0</td>
<td>1)$</td>
<td>$\text{std}(c_1</td>
<td>1)$</td>
</tr>
<tr>
<td>Max Δq</td>
<td>0.367</td>
<td>0.168</td>
<td>0.463</td>
<td>0.185</td>
</tr>
<tr>
<td>Min Δq</td>
<td>0.176</td>
<td>0.069</td>
<td>0.199</td>
<td>0.075</td>
</tr>
<tr>
<td>Max $\Delta \theta_1$</td>
<td>0.475</td>
<td>0.172</td>
<td>0.447</td>
<td>0.163</td>
</tr>
<tr>
<td>Min $\Delta \theta_1$</td>
<td>0.142</td>
<td>0.063</td>
<td>0.193</td>
<td>0.074</td>
</tr>
<tr>
<td>Max Δc_0</td>
<td>0.257</td>
<td>0.094</td>
<td>0.284</td>
<td>0.101</td>
</tr>
<tr>
<td>Min Δc_0</td>
<td>0.179</td>
<td>0.082</td>
<td>0.210</td>
<td>0.082</td>
</tr>
<tr>
<td>Max Δc_1</td>
<td>0.445</td>
<td>0.161</td>
<td>0.453</td>
<td>0.170</td>
</tr>
<tr>
<td>Min Δc_1</td>
<td>0.179</td>
<td>0.074</td>
<td>0.214</td>
<td>0.081</td>
</tr>
</tbody>
</table>

The simulation results (Tables 1-3) reveal three facts: (i) the unconditional standard deviations for consumption volatility are an order of magnitude larger than the endowment standard deviation, (ii) the conditional standard deviations are strictly positive, and (iii) the conditional standard deviations are on average more than 90% as large as the unconditional standard deviations.

These findings suggest that initial condition indeterminacy is present and that endowment volatility is not of first-order importance for explaining consumption volatility.

4.5.3 Robustness check on initial conditions

We also analyze the effects of the initial conditions on the behavior of the economy. For each of the following experiments, we remain consistent by applying the same selection rule (chosen from one of the 8 possibilities previously introduced) for both the benchmark economy and for economies with different initial conditions. Recall that the benchmark economy specifies $\{\theta_1(-1), s_0, m_0\} = \{3.0, 2, 5.50\}$. The first experiment specifies $m_0 = 5.10$, the second specifies $s_0 = 1$ such that $e_2(s_0) = 1 + \epsilon$, while the third specifies $\theta_1(-1) = 4.3128$. After we drop the first 1,000 periods, the simulated moments and simulated conditional moments are identical to those for the benchmark economy.

4.6 Sunspot equilibria

To decompose the effects of incomplete markets indeterminacy and endowment volatility on consumption and asset price volatility, we construct a sunspot equilibrium based on our benchmark economy. We maintain the same Markov chain, but the shocks are now states of extrinsic uncertainty, meaning that the endowments remain
unchanged. The endowment process is given by

\[
\begin{align*}
 e_0(s) &= 3 & \forall s &\in \{1, 2\} \\
 e_1(s) &= 12 & \forall s &\in \{1, 2\} \\
 e_2(1) &= 1 + \epsilon & \epsilon &= 0 \\
 e_2(2) &= 1 - \epsilon
\end{align*}
\]

There still remain \(S = 2 \) states of uncertainty, and consumers need not have the same price expectations for both states. If the price expectations differ, then any consumption volatility is owing only to the incomplete markets indeterminacy, since the fundamentals of the economy remain unchanged.

For each of the 8 consistent selection rules, we run 5,000 simulations as before (where each simulation lasts for 5,000 periods and the first 1,000 periods are ignored when computing simulated moments).

The results are presented in Tables 4 and 5.

<table>
<thead>
<tr>
<th>statistics</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>simulation</td>
<td>(\text{std}(c_0))</td>
<td>(\text{std}(c_1))</td>
<td>(\text{std}(\theta_1))</td>
<td>(\text{std}(q))</td>
</tr>
<tr>
<td>1 Max (\Delta q)</td>
<td>0.430</td>
<td>0.180</td>
<td>0.395</td>
<td>0.233</td>
</tr>
<tr>
<td>2 Min (\Delta q)</td>
<td>0.210</td>
<td>0.088</td>
<td>0.196</td>
<td>0.104</td>
</tr>
<tr>
<td>3 Max (\Delta \theta_1)</td>
<td>0.497</td>
<td>0.168</td>
<td>0.502</td>
<td>0.189</td>
</tr>
<tr>
<td>4 Min (\Delta \theta_1)</td>
<td>0.184</td>
<td>0.078</td>
<td>0.166</td>
<td>0.094</td>
</tr>
<tr>
<td>5 Max (\Delta c_0)</td>
<td>0.415</td>
<td>0.149</td>
<td>0.402</td>
<td>0.181</td>
</tr>
<tr>
<td>6 Min (\Delta c_0)</td>
<td>0.197</td>
<td>0.086</td>
<td>0.182</td>
<td>0.010</td>
</tr>
<tr>
<td>7 Max (\Delta c_1)</td>
<td>0.462</td>
<td>0.166</td>
<td>0.461</td>
<td>0.187</td>
</tr>
<tr>
<td>8 Min (\Delta c_1)</td>
<td>0.195</td>
<td>0.081</td>
<td>0.173</td>
<td>0.109</td>
</tr>
</tbody>
</table>

Table 4: Simulated standard deviations (sunspots)

<table>
<thead>
<tr>
<th>statistics</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>simulation</td>
<td>(\text{std}(c_0</td>
<td>1))</td>
<td>(\text{std}(c_1</td>
<td>1))</td>
</tr>
<tr>
<td>1 Max (\Delta q)</td>
<td>0.418</td>
<td>0.176</td>
<td>0.443</td>
<td>0.184</td>
</tr>
<tr>
<td>2 Min (\Delta q)</td>
<td>0.200</td>
<td>0.088</td>
<td>0.221</td>
<td>0.088</td>
</tr>
<tr>
<td>3 Max (\Delta \theta_1)</td>
<td>0.495</td>
<td>0.169</td>
<td>0.498</td>
<td>0.168</td>
</tr>
<tr>
<td>4 Min (\Delta \theta_1)</td>
<td>0.166</td>
<td>0.072</td>
<td>0.200</td>
<td>0.083</td>
</tr>
<tr>
<td>5 Max (\Delta c_0)</td>
<td>0.239</td>
<td>0.096</td>
<td>0.269</td>
<td>0.098</td>
</tr>
<tr>
<td>6 Min (\Delta c_0)</td>
<td>0.198</td>
<td>0.088</td>
<td>0.196</td>
<td>0.083</td>
</tr>
<tr>
<td>7 Max (\Delta c_1)</td>
<td>0.459</td>
<td>0.165</td>
<td>0.498</td>
<td>0.168</td>
</tr>
<tr>
<td>8 Min (\Delta c_1)</td>
<td>0.184</td>
<td>0.080</td>
<td>0.205</td>
<td>0.081</td>
</tr>
</tbody>
</table>

Table 5: Simulated standard deviations (conditional, sunspots)

Broken down by variable, the following subsections show that the volatility for any of the variables (consumption, asset price, asset choice) is driven by the effects of incomplete markets indeterminacy and not by the endowment shocks.
4.6.1 Consumption volatility

To assess the volatility of young-age consumption, consider the 6 simulations that did not include young-age consumption in the objective function. Averaged across these 6 simulations, the standard deviations for young-age consumption in the sunspot model (no endowment risk) are 97% as large as the standard deviations in the original model with endowment risk. Similar patterns hold for middle-age consumption. If the sunspot model accounts for 97% of the consumption volatility, then the volatility is decomposed as 3% due to endowment shocks and 97% due to indeterminacy.

4.6.2 Asset price volatility

To assess the volatility of the asset prices, consider the 6 simulations that did not include the asset price $q'(\hat{\sigma})$ in the objective function. Averaged across these 6 simulations, the unconditional standard deviations for q in the sunspot model (no endowment risk) are 93% as large as their respective unconditional standard deviations with endowment risk. The range for this ratio across all 6 simulations runs from 87% to 97%.

4.6.3 Asset size volatility

In the sunspot model, since $c_2(\hat{\sigma}) = e_2(\hat{\sigma}) + \theta_1$ and the endowment value is equal across states, then the old-age consumption volatility is identical to the asset size volatility.

To assess the volatility of the asset holdings themselves, consider the 6 simulations that did not include the asset choice $\theta'_1(\hat{\sigma})$ in the objective function. Averaged across these 6 simulations, the unconditional standard deviations for θ_1 in the sunspot model (no endowment risk) are 89% as large as their respective unconditional standard deviations with endowment risk. The range for this ratio across all 6 simulations runs from 81% to 100%.

4.7 Economies with initial condition determinacy

A sufficient condition for initial condition determinacy is the property of gross substitution in consumption. While sufficient, this property is not necessary. In a deterministic setting, Kehoe and Levine (1990) and Feng (2013) find economies that do not satisfy this sufficient condition and yet exhibit initial condition determinacy.

In a stochastic setting, finding the set of economies that lead to initial condition determinacy remains just as relevant. We consider two experiments in which the economy parameters are changed. In the first experiment, the parameter for consumer risk-aversion is reduced from $b = 4$ to $b = 3.2$, with all other parameters held constant. In the second experiment, the endowment process is changed from $e = \{3, 12, 1 \pm 5\}$ to $e = \{3, 8, 2 \pm 5\}$, with all other parameters held constant. The two endowment
processes are given by:

\[
e = \{3, 12, 1 \pm 5\%\} \quad e = \{3, 8, 2 \pm 5\%\}
\]

\[
e_0(s) = 3 \quad \forall s \in \{1, 2\} \quad e_0(s) = 3 \quad \forall s \in \{1, 2\}
\]

\[
e_1(s) = 12 \quad \forall s \in \{1, 2\} \quad e_1(s) = 8 \quad \forall s \in \{1, 2\}
\]

\[
e_2(1) = 1 + \epsilon \quad \epsilon = 0.05 \quad e_2(1) = 2 + \epsilon \quad \epsilon = 0.10
\]

\[
e_2(2) = 1 - \epsilon \quad e_2(2) = 2 - \epsilon
\]

For each of the two experiments, we compute simulated moments as in the original economy. We numerically confirm that the two economies exhibit initial condition and incomplete markets determinacy. We do not need to implement selection rules, since there exists a unique vector of state variables each period: \((\omega'(\sigma), m'(\sigma))_{\sigma \in S} = F(s, \omega, m)\).

The simulated moments are given in Table 6. For the first experiment (with \(b\) changed from \(b = 4\) to \(b = 3.2\)), the ratio \(\frac{\text{std}(\theta_1)}{\text{mean}(\theta_1)} = 0.0085\), which is 10\% as large as the average ratio across all simulations in the model with \(b = 4\) (average across all simulations is \(\frac{\text{std}(\theta_1)}{\text{mean}(\theta_1)} = 0.088\)). In terms of prices, the ratio \(\frac{\text{std}(q)}{\text{mean}(q)} = 0.0399\), which is 20\% as large as the average ratio across all simulations in the model with \(b = 4\) (average across all simulations is \(\frac{\text{std}(q)}{\text{mean}(q)} = 0.192\)).

For the second experiment (with \(e\) changed from \(e = \{3, 12, 1 \pm 5\%\}\) to \(e = \{3, 8, 2 \pm 5\%\}\)), the ratio \(\frac{\text{std}(\theta_1)}{\text{mean}(\theta_1)} = 0.0161\), which is 20\% as large as the average across all 8 simulations in the model with \(e = \{3, 12, 1 \pm 5\%\}\). In terms of prices, the ratio \(\frac{\text{std}(q)}{\text{mean}(q)} = 0.0896\), which is 50\% as large as the average across all 8 simulations in the model with \(e = \{3, 12, 1 \pm 5\%\}\).

<table>
<thead>
<tr>
<th>Model</th>
<th>mean ((\theta_1))</th>
<th>mean ((q))</th>
<th>std ((\theta_1))</th>
<th>std ((q))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b = 3.2; e = {3, 12, 1 \pm 5%})</td>
<td>5.030</td>
<td>0.331</td>
<td>0.0431</td>
<td>0.0132</td>
</tr>
<tr>
<td>(b = 4; e = {3, 8, 2 \pm 5%})</td>
<td>2.730</td>
<td>0.346</td>
<td>0.044</td>
<td>0.031</td>
</tr>
</tbody>
</table>

Table 6: Simulated moments (determinacy)

Relative to the baseline economy, a reduction in the risk-aversion parameter or a reduction in the volatility of the endowment process can lead to initial condition determinacy. Initial condition determinacy implies incomplete markets determinacy (Theorem 4), meaning that determinacy does not have long-run effects. The simulation results in Table 6 reveal that economies with initial condition determinacy have asset price and asset holding volatilities on the same order of magnitude as the endowment volatility. Moreover, the asset price and asset holding volatilities for the determinate economies are \(10 - 50\%\) as large as the corresponding volatilities for nearby economies with incomplete markets indeterminacy.

4.8 Discussion of the example economy

Well-known empirical puzzles concerning asset price and consumption volatility document that the observed volatility of both variables is higher than what is predicted
from classical theory.\footnote{The excess volatility puzzle (see LeRoy and Porter (1981) and Shiller (1981)) documents that asset price volatility is much higher than what is predicted by classical theory with additively separable and CRRA utility for a representative household. The closely related equity premium puzzle is based upon the recognition that it is not possible to adjust the risk aversion parameter and reconcile the model with both the equity premium and the risk-free rate observed in the data (see Mehra and Prescott (1985) and Weil (1989)). For further discussion of asset pricing volatility, see Hansen and Jagannathan (1991) and Backus, Chernov, and Zin (2014). Consumption volatility refers to the fact that observed consumption volatility is much greater than what is predicted by the Permanent Income Hypothesis, which can be interpreted as a setting with complete financial markets (see Krueger and Perri (2006)).} This paper does not attempt to solve these empirical puzzles, but rather to understand what role, if any, incomplete markets indeterminacy plays in supporting asset price and consumption volatility. We study simple economies in which the effects of indeterminacy on asset price and consumption volatility are easily elicited, and thus only utilize a stylized calibration as in Kehoe and Levine (1990).

The cohorts in our economies consist of a unit mass of homogeneous households that each live for 3 periods. This is the simplest setting in which asset trade is nontrivial. The mechanism under which indeterminacy has real effects requires nontrivial asset trade: households form beliefs about the asset prices in future periods, trade assets based upon these beliefs, and use the asset payouts to smooth consumption. We view each period as lasting for 20 years and impose a life-cycle earnings profile consistent with Auerbach and Kotlikoff (1987) and Gourinchas and Parker (2002).

Without a more realistic calibration, our numerical results provide an incomplete answer to the question of whether incomplete markets indeterminacy in SOLG models provides a theoretical foundation for the asset price and consumption volatility observed in the data. What we have learned is that incomplete markets indeterminacy does matter; it has real effects and these persist in the long run. The next step is to evaluate the degree to which our numerical results extend to a more realistic setting. Does the scale of the model matter? Our theoretical results and computational methodology are both immediately applicable to a large scale model, but in a large scale model, the relation between indeterminacy and volatility becomes blurred and the computation becomes untractable.

In the current model, households live for 60 years (the expected lifespan for adults), but only receive 3 realizations of uncertainty during their lifetime. In a large scale model, households would continue to live for 60 years, but would instead receive realizations of uncertainty every year (or every quarter). The partition of uncertainty will be finer, and households will be able to trade on this uncertainty with higher frequency. We hypothesize that the effects of indeterminacy will be amplified with higher frequency trading, as households have more opportunities to form self-fulfilling beliefs about asset prices in future periods.
5 Conclusion

In this paper, we analyze the effects of indeterminacy on consumption and asset price volatility in SOLG models. We introduce the concept of incomplete markets indeterminacy and compute its effects by (i) approximating the entire set of competitive equilibria and (ii) running simulations over a variety of selection rules. Our simulations indicate that the choice of selection rule has welfare effects. Even for the selection rules with the most conservative predictions, we find that indeterminacy is an order of magnitude more important than endowment risk in explaining consumption and asset price volatility.

These findings suggest that for economies in which indeterminacy is present, consumers’ expectations of prices play an important role in the allocation of resources. It is only in understanding how these expectations affect resource allocation that we can implement welfare-improving policies. Analysis of specific welfare-improving policies in this class of models is left for future research.

References

6 Appendix

6.1 Proof of Theorem 1

To show that a Markov equilibrium satisfies the SCE definition, the Euler equations (9) and (11) must be necessary and sufficient for household optimality. Necessity is immediate. Sufficiency follows as households are finite-lived.

6.2 Proof of Theorem 2

From the standard arguments used to show the existence of a SCE, the set of shadow prices of investment \(m(s') \) belong to a compact set \(\Delta \subseteq \mathbb{R}^J \) in all nodes. The iterative construction begins with the correspondence \(V_0 : S \times \mathbb{R} \to \mathbb{R}^J_+ \) such that \(V_0(s, \omega) = \Delta \ \forall (s, \omega) \in S \times \mathbb{R} \).

Given a correspondence \(V_n : S \times \mathbb{R} \to \mathbb{R}^J_+ \) for any \(n \geq 0 \), define an operator \(B \) that maps the correspondence \(V_n : S \times \mathbb{R} \to \mathbb{R}^J_+ \) to a new correspondence \(V_{n+1} : S \times \mathbb{R} \to \mathbb{R}^J_+ \) defined as follows:

\[
V_{n+1}(s, \omega) = \begin{cases}
\text{for } (g, \theta_1) = f(s, \omega, m), \\
\text{there exists } m' \in V_n(s, \sigma) \land \sigma \in S \text{ such that } q^j u_c [e_0(s) + q \theta_1] = \beta \sum_{\sigma \in S} \pi(s, \sigma) \lambda_{1}(\sigma) r^j(\sigma) \forall j \in J
\end{cases}
\]

The correspondences are defined recursively using this operator \(B \):

\[
V_{n+1} = B(V_n).
\]

The Markov equilibrium policy correspondence is defined as follows:

\[
V^*(s, \omega) = \lim_{n \to \infty} B^n(V_n(s, \omega)) \ \forall (s, \omega) \in S \times \mathbb{R}.
\]

Theorem 1 from Feng et al. (2014), reproduced below, guarantees the existence of a Markov equilibrium policy correspondence.

Theorem 6. Let \(V_0 \) be a compact-valued correspondence such that \(V_0 \supseteq V^* \). Let \(V_{n+1} = B(V_n), n \geq 0 \). Then, \(V_n \to V^* \) as \(n \to \infty \). Moreover, \(V^* \) is the largest fixed point of the operator \(B \), i.e., if \(V = B(V) \), then \(V \subset V^* \).

6.3 Proof of Theorem 5

Under incomplete markets, by definition, there exists a continuum of state prices \((\lambda_1(\sigma))_{\sigma \in S} \) satisfying the age \(a = 0 \) Euler equation (11):

\[
q^j u_c [e_0(s) + q \theta_1] = \beta \sum_{\sigma \in S} \pi(s, \sigma) \lambda_1(\sigma) r^j(\sigma) \forall j \in J.
\]
By definition \(\lambda_1(\sigma) = \frac{m^{ij}(\sigma)}{q^{ij}(\sigma)} \) \(\forall j \in J \). With initial condition indeterminacy, \(\dim (V^*(\hat{s}, \hat{\omega})) > 0 \) for some \((\hat{s}, \hat{\omega})\). The image \(F(s, \omega, m) \) contains the continuum of \((\omega'(\sigma), m'(\sigma))_\sigma \in S\) such that \(\omega'(\sigma) = r(\sigma) f_\theta(s, \omega, m) \) and \(m'(\sigma) \in V^*(\sigma, \omega'(\sigma)) \) for all \(\sigma \in S \) and the state prices \(\left(\frac{m^{ij}(\sigma)}{q^{ij}(\sigma)} \right)_{\sigma \in S} \) belong to the continuum satisfying (11).

Suppose, in order to obtain a contradiction, that there exists a unique vector \((\omega'(\sigma), m'(\sigma))_{\sigma \in S} \in F(s, \omega, m)\). Then there exists a unique vector \((q'(\sigma))_{\sigma \in S}\) defined such that \(q'(\sigma) = f_\theta(\sigma, \omega'(\sigma), m'(\sigma)) \). This contradicts that a continuum of state prices \(\left(\frac{m^{ij}(\sigma)}{q^{ij}(\sigma)} \right)_{\sigma \in S} \) exists. This completes the argument.

6.4 Numerical Algorithm

The vector of possible values for bond-holding and shocks are given by \(\hat{\Theta} = \{ \theta^{i_1}_0 \}_{i_1=1}^{N_\theta}, \hat{S} = \{ s^{i_2}_0 \}_{i_2=1}^{N_s} \). For each pair of the bond-holding and shock grids, \((\theta^{i_1}_0, s^{i_2}_0)\), we also define a finite vector of possible values for the image of the correspondence: \(\hat{V}^0_{\mu, \varepsilon}(\theta^{i_1}_0, s^{i_2}_0) = \left\{ m^{i_1,i_2,j} \right\}_{j=1}^{N_\varepsilon} \). Notice, \(\lim_{N_\theta \to \infty} \hat{\Theta} = \Theta \), \(\lim_{N_\varepsilon \to \infty} \hat{V}^0_{\mu, \varepsilon}(\theta^{i_1}_0, s^{i_2}_0) = \hat{V}^0_{\mu, \varepsilon}(\theta^{i_1}_0, s^{i_2}_0) \).

Finally, we construct the discrete version of operator \(B^{\theta, \mu, \varepsilon} \) by eliminating points (in the Euler equation, for a predetermined tolerance \(\varepsilon > 0 \)) as follows:

1. Given \((\theta^{i_1}_0, s^{i_2}_0)\), pick a point \(m^{i_1,i_2,j}_0 \) in the vector \(\hat{V}^0_{\mu, \varepsilon}(\theta^{i_1}_0, s^{i_2}_0) \). From \(m^{i_1,i_2,j}_0 \) we can determine the values of \((\theta^{i_1,i_2,j}, q^{i_1,i_2,j}) \) by solving for

\[
\begin{align*}
m^{i_1,i_2,j}_0 - q^{i_1,i_2,j} \cdot u_c \left(e_1(s^{i_2}_0) + \theta^{i_1}_0 - q^{i_1,i_2,j} \theta^{i_1,i_2,j} \right) &= 0, \\
m^{i_1,i_2,j}_0 - \beta \sum_{s'} \pi(s'|s_0) u_c \left(e_2(s^{i_1,i_2,j}) \right) &= 0
\end{align*}
\]

Thus, if for all \(m' \in \hat{V}^0_{\mu, \varepsilon}(\theta^{i_1,i_2,j}, s') = \left\{ m'(\theta^{i_1,i_2,j}, s') \right\}_{j=1}^{N_\varepsilon} \), we have

\[
\min_{m' \in \left\{ m' \right\}_{j=1}^{N_\varepsilon}} \left\| q^{i_1,i_2,j} \cdot u_c \left(e_0(s^{i_2}_0) - q^{i_1,i_2,j} \theta^{i_1,i_2,j} \right) - \beta \sum_{s'} \pi(s'|s^{i_2}_0) \left(\frac{m'}{q} \right) \right\| > \varepsilon
\]

where the value of \(q' \) is determined by the same procedure in finding \((\theta^{i_1,i_2,j}, q^{i_1,i_2,j}) \), then \(\hat{V}^0_{\mu, \varepsilon}(\theta^{i_1}_0, s^{i_2}_0) = \hat{V}^0_{\mu, \varepsilon}(\theta^{i_1}_0, s^{i_2}_0) - m^{i_1,i_2,j}_0 \).

2. Iterate over all possible values \(m^{i_1,i_2,j}_0 \in \hat{V}^0_{\mu, \varepsilon}(\theta^{i_1}_0, s^{i_2}_0) \), and all possible \((\theta^{i_1}_0, s^{i_2}_0) \in \hat{\Theta} \times \hat{S}\).

3. Iterate until convergence is achieved \(\sup \left\| \hat{V}^0_{\mu, \varepsilon} - \hat{V}^0_{\mu, \varepsilon} \right\| = 0 \).

At the limit of the above algorithm, we have \(\lim_{n \to \infty} \hat{V}^0_{\mu, \varepsilon} = \hat{V}^0_{\mu, \varepsilon} \).
6.5 Figure

Figure 1: Equilibrium set of \(\{ m'(\sigma) \}_{\sigma \in \{1,2\}} \cdot m \) at given \(\{ s, \omega \} \).