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Abstract

The number of financial markets and the beliefs about the relation between markets

can have large effects on the access to credit in a model with collateralized borrowing.

In the model, investors have beliefs about the payout likelihoods for assets. I vary the

degree of dependence between the likelihoods for the asset payouts and solve for the

endogenous leverage ratios. When investors believe that the payouts of the assets are

more dependent, the model predicts higher leverage ratios for all assets. When the

number of financial markets available to investors increases, a condition in terms of the

belief elasticity characterizes whether or not the leverage ratios increase.
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1 Introduction

Leverage ratios have become important macroprudential variables following the recent 2007-

2008 financial crisis. This paper analyzes the effects that the number of financial markets and
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the beliefs about the relation between markets can have on leverage. In analyzing leverage,

it is important to consider models in which leverage is endogenously determined.1 Investors

in my model have multiple asset markets available to them and heterogeneous beliefs about

asset payouts, where the beliefs are multi-dimensional and allow for dependence across assets.

When investors believe that the payouts of the assets are more dependent, the model predicts

higher leverage ratios for all assets. The effect of the number of financial markets on leverage

depends crucially on the degree of belief dependence.

The term "financial fragility" is typically defined in terms of leverage ratios. In financial

models under rational expectations, high leverage is not necessarily an undesirable outcome

as it is associated with high levels of risk-sharing among investors. It is important, in these

models, to understand the market conditions leading to high leverage, particularly if we take

the remarks of policy makers following the 2007-2008 financial crisis at face value:

"How could macroprudential policies be better integrated into the regulatory

and supervisory system? One way would be for the Congress to direct and

empower a governmental authority to monitor, assess, and, if necessary, address

potential systemic risks within the financial system. The elements of such an

authority’s mission could include, for example, .... (2) assessing the potential

for deficiencies in evolving risk-management practices, broad-based increases in

financial leverage, or changes in financial markets or products to increase systemic

risks..." Ben Bernanke, Council on Foreign Relations, March 10, 2009

The two effects analyzed in this paper are the effects of belief dependence on leverage

and the effects of financial expansion on leverage. Financial expansion refers to an increase

in the number of financial markets available to investors. Policy analysis must account for

the indirect relation between policy and leverage via the belief dependence and the financial

expansion channels. To see why it is essential to analyze these effects together, it is instructive

to consider the findings from a canonical endogenous leverage model with a single asset.

Within the class of 2-period binomial economies, the canonical Geanakoplos (1997, 2003,

2010) model contains a unit mass of risk-neutral investors, each endowed with an equal

amount of endowment in the initial period and one unit of the real asset. In the binomial

economy, investors agree that the single asset has two possible dividend values in the final

period, but they have heterogeneous beliefs about the likelihood of these dividends. Belief

heterogeneity is characterized by a cumulative distribution function (cdf) that specifies the

probability each investor assigns to the high dividend realization. In the simplest setting,

investor beliefs are uniformly distributed.
1See Geanakoplos (1997, 2003, 2010), Geanakoplos and Fostel (2008, 2012, 2015), Simsek (2013), Geerolf

(2015), and Phelan (2015).
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The key mechanism in the canonical Geanakoplos (1997, 2003, 2010) model is driven by

wealth effects, specifically the amount of wealth available for buyers to invest in the asset

market. If investor endowment increases, the wealth in the asset market increases, meaning

that the asset price will increase and the leverage (by definition) will decrease. If the low

dividend value increases, wealth in the asset market increases as investors can borrow more,

and this causes the asset price to increase.

Mymodel considers a 2-period binomial economy withN assets. The economy is binomial

as each asset has one of two possible dividend values in the final period. Risk-neutral investors

have heterogeneous beliefs over all possible states of realizations in the final period, where

a state of realization is a distinct portfolio of dividends. The model makes two simplifying

assumptions, while maintaining enough structure to analyze the effects of belief dependence.

First, investors agree that the dividend realizations are random variables drawn from an

independent distribution, but they do not agree on that distribution. With an independent

distribution, the heterogeneous beliefs are characterized by a cumulative distribution with

dimension equal to the number of assets N. The second simplifying assumption is to consider

a special class of continuous cdfs called copulas. Copulas have the property that the marginal

distributions are uniformly distributed, meaning that the marginal beliefs for any asset are

uniformly distributed. These two simplifying assumptions, the latter to maintain consistency

with the canonical Geanakoplos (1997, 2003, 2010) model, allow for a tractable analysis of

the effects of belief dependence and financial expansion.

The copulas considered in the paper are general enough to include comonotonic and

independent beliefs as special cases. In terms of correlation, which is a narrow definition of

the relation between two variables, comonotonic variables have correlation equal to 1 and

independent variables have correlation equal to 0. The analysis focuses on belief dependence

in the range between comonotonic beliefs and independent beliefs. The first main result

shows that as the belief dependence increases (moving closer to comonotonicity), the leverage

ratios increase for all assets.

Financial expansion is defined as an increase in the number of financial markets. As each

market corresponds to a real asset in positive net supply, financial expansion also expands

the total initial asset endowments of households. The commodity endowments remain fixed

under financial expansion. On a per-market basis, financial expansion is a negative wealth

effect as fewer funds are available for each market.

Two effects arise under financial expansion: the wealth effect and the belief dependence

effect. With less wealth in each asset market, the asset price decreases and leverage increases.

The belief dependence effect arises when the belief dependence between the new financial

markets and the old financial markets is not perfectly dependent. With less-than-full depen-
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dence, investors are not able to predict the payout likelihoods of new financial markets using

payout likelihoods from existing financial markets. The belief dependence effect states that

an increase in the number of assets decreases the belief dependence over all markets, which

in turn causes leverage to decrease.

The two effects work in opposite directions, where the latter belief dependence effect is

only present in the multi-asset setting. Define the belief elasticity as the percent change in

the cumulative distribution of household beliefs relative to the percent change in the number

of financial markets. The belief effect is governed by this belief elasticity variable. The

second main result of the paper derives a condition involving the belief elasticity to charac-

terize the conditions under which each effect will dominate. With a high belief dependence,

the wealth effect dominates and financial expansion leads to increased leverage. For low

belief dependence, the belief dependence effect dominates and financial expansion leads to

decreased leverage.

The effects of belief dependence on the financial expansion and leverage relation is strictly

monotonic. This means that there exists a cutoff value for belief dependence above which

financial expansion leads to increased leverage ratios and below which financial expansion

leads to decreased leverage ratios. An example illustrates this mechanism.

1.1 Literature review

My paper belongs to the class of general equilibrium models with endogenous collateral,

which have been developed using the general equilibrium framework in the Geanakoplos and

Zame (2014) model with exogenous collateral constraints.

There are two strands of literature with endogenous collateral. In the first strand of

literature, to which the model developed in the present paper belongs, all investors agree that

there are a finite number of possible states of uncertainty that can be realized. Geanakoplos

(1997, 2003, 2010) considers binomial economies with a continuum of different types of risk-

neutral investors. The collateralized borrowing contracts that are traded in equilibrium

in this setting are default-free, meaning that borrowers are able to borrow the maximum

amount such that they will always repay their loans in all future states.

Within the class of binomial economies, Geanakoplos and Fostel (2015) extend the model

to allow for risk-averse investors and show that there are no real effects from restricting the

equilibrium set of borrowing contracts to the set of default-free contracts. Extending the

present model to risk-averse investors is a natural extension and Appendix A.2 addresses the

issues involved in extending the present model to the setting of risk aversion.

Geanakoplos and Fostel (2008, 2012) both consider multi-asset economies. Geanakoplos
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and Fostel (2008) consider an economy with three assets.2 In that model, there are three

time periods and information about only one asset is gathered from the initial period to

the intermediate period. The random variables for dividend realizations are independently

drawn, as in the current paper. Geanakoplos and Fostel (2008) is interested in generating

leverage cycles (hence the 3-period model) and assumes a specific form of belief heterogeneity,

namely two types of investors. Geanakoplos and Fostel (2012) consider an economy with

two assets and a continuum of types of investors, but only one of the assets is risky, meaning

that the only beliefs that matter are the beliefs for the single risky asset. A general cdf

for investor beliefs is considered (corresponding to beliefs from a non-uniform distribution).

The current paper considers a continuum of investors and any finite number of assets in a

2-period model in which beliefs are characterized by copulas.3

In the second strand of literature on endogenous collateral, 2-period models with a contin-

uum of possible states of uncertainty are studied. In Simsek (2013), two types of risk-neutral

investors have heterogeneous beliefs about the likelihood functions over states in the final

period. In Geerolf (2015), a continuum of different types of risk-neutral investors have het-

erogeneous beliefs about the asset dividends in the final period. Both Simsek (2013) and

Geerolf (2015) use belief disagreements among risk-neutral households to study leverage, an

exercise I extend to the multi-asset setting. Phelan (2017) takes a different approach when

studying leverage by employing a model with two types of risk-averse investors with com-

mon beliefs but heterogeneous risk aversion and endowments. Phelan (2017) shows that the

effects of heterogeneity in either risk aversion or endowments can have ambiguous effects on

leverage. By restricting my analysis to one form of heterogeneity, in terms of beliefs, I derive

unambiguous effects on leverage.

The remainder of the paper is organized as follows. Section 2 introduces the model. Sec-

tion 3 introduces the notion of a copula, which is how the model caputures belief dependence.

Section 4, working with a general class of copulas, provides the main results relating belief

dependence to leverage. Section 5 considers the special cases of perfectly independent and

perfectly dependent beliefs. Section 6 provides concluding remarks, Appendix A contains

supporting technical material, and Appendix B contains the proofs of the main results.

2The beliefs between two of the assets are assumed to be comonotonic, which reduces the model to one
with two independent assets.

3The tractable model introduced in the present paper can be generalized to a 3-period model to analyze
leverage cycles. However, such analysis is incomplete in a pure-exchange economy. With the properties of
belief dependence established in the present paper, the more appropriate next step is to embed the model
into a production economy with at least 3 periods that will allow for the possibility of leverage cycles (at
least 3 periods).
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2 The Model

The leverage cycle model was introduced by Geanakoplos (1997, 2003, 2010). This paper

extends that model by considering an asset structure with multiple assets. To accomodate

readers familiar with the Geanakoplos (1997, 2003, 2010) model, I adhere to his notation as

much as possible.

The model contains two time periods. The economy contains N ≥ 2 real assets. Denote

the set of assets as I = {1, ..., N} . These assets pay out dividends in the final period. The
dividends for each asset can either be high (H) or low (L). With N assets, there are 2N

possible realizations of uncertainty in the final period. Label the date-events in the final

period as s ∈ S =
{

1, ..., 2N
}
.

For each asset i, the dividends are normalized such that the high dividend equals 1 and

the low dividend equals di, where 0 < di < 1.

In each period, a single physical commodity is traded and consumed.

2.1 Households

The model contains a continuum of households with unit mass. The set of households is

H = [0, 1] with typical element h ∈ H.
In the initial period, each household receives an endowment of 1 unit of the commodity.

Denote household consumption the initial period as ch (0) and household consumption

in date-event s in the final period as ch(s). For simplicity, denote ch =
(
ch(0),

(
ch(s)

)
s∈S

)
.

2.1.1 Heterogeneous beliefs

Each household believes that the dividend realizations for all assets are random variables

drawn from an independent distribution, but the households do not agree on that distribu-

tion.

The beliefs of a household are represented by the vector (h1, ...., hN) ∈ [0, 1]N , where

hi is the belief associated with the random variable for asset i. A household with belief hi
assigns probability hi to the event that asset i has high dividend and probability 1 − hi to
the event that asset i has low dividend.

For any household h, define πh (s) as the probability that date-event s occurs in the

final period according to household h with beliefs (h1, ...., hN) . For instance, if N = 2 and

S = {1, 2, 3, 4} corresponds to the dividend realizations {HH,HL,LH,LL} for assets 1 and
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2, respectively, then

πh (s) =


h1h2 for s = 1

h1 (1− h2) for s = 2

(1− h1)h2 for s = 3

(1− h1) (1− h2) for s = 4

 .

The probabilities (h1, ...., hN) are drawn from the joint distribution FH1,...,HN (h1, ...., hN) .

The distribution is symmetric. Moreover, it is assumed that the marginal distributions

FHi (hi) are uniformly distributed for all i.

Households in this model are risk-neutral. Household h with beliefs (h1, ...., hN) maxi-

mizes the following expected utility function:

Uh
(
ch
)

= ch(0) +
∑
s∈S

πh (s) ch(s).

2.1.2 Real assets

The model contains N real assets in unit net supply that are traded in the initial period.

Each household is initially endowed with 1 unit of each asset. Denote ahi as the asset i

holdings chosen in the initial period. Short-selling the asset is not permitted, so the variables

must satisfy ahi ≥ 0 for all i and all h. The price of asset i is denoted pi. For simplicity, denote

ah =
(
ahi
)
i∈I and p = (pi)i∈I .

2.1.3 Storage

Households have access to a perfect storage technology. Denote sh ∈ R+ as the amount of

the physical commodity stored by household h.

2.1.4 Collateralized borrowing

In addition to the assets, markets exist for the households to trade noncontingent borrowing

contracts. The borrowing contracts are non-recourse loans. In order to protect the interests

of the lenders, the loans must be secured with collateral. Otherwise, lenders would not be

willing to lend as the borrowers would renege on their obligations ex-post.

Though intuitive to normalize the promised repayment to 1 and consider borrowing con-

tracts as (interest rate, collateral) pairs, it is actually more convenient (mathematically) to

adopt an equivalent representation of borrowing contracts as (promised repayment, interest

rate) pairs with normalized collateral. The collateral requirement is 1 unit of cumulative

asset holdings, meaning that any combination of the real assets is possible, provided that

the holdings sum to 1. This accounts for collateral requirements in terms of mixtures across
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assets. The markets will ultimately determine which collateral mixtures support nonzero

borrowing in equilibrium, together with the promised repayment and the interest rate for

such borrowing.

In the unit simplex ∆N−1, the vector θ ∈ ∆N−1 characterizes one possible collateral

mixtrue with θ1 units of asset 1, θ2 units of asset 2, and so forth. For each collateral mixture

θ ∈ ∆N−1, consider all possible promised repayments j ≥ 0. These two features characterize

a borrowing contract (the interest rate rj is inversely related to the borrowing price qj and

is determined from market clearing (4)).

When θ = (1, 0, ..., 0), I denote (θ, j) = (1, j) , and similarly for other assets.

I allow the possibility for all borrowing contracts, using the notation θ ∈ ∆N−1 and

j ∈ R+. Define B as the Borel algebra over ∆N−1 × R+. I denote the contract prices q :

∆N−1 × R+ → R+ and require that q is B−measurable. For each household h, the net

borrowing contracts are represented by the measure µh : B → R. Denote µh+ as the measure
consisting only of the nonnegative positions and µh− as the measure consisting only of the

nonpositive positions.

2.2 Equilibrium

2.2.1 Initial period constraints

The households face both a budget constraint and collateral constraints in the initial period.

The budget constraint is given by:

ch (0) + sh +
∑
i∈I
pia

h
i ≤ 1 +

∑
i∈I
pi +

∫
(θ,j)∈∆N−1×R+

q(θ, j)µh (d (θ, j)) . (1)

The collateral constraints (one for each asset) are given by:∫
(θ,j)∈∆N−1×R+

θi · µh+ (d (θ, j)) ≤ ahi ∀i ∈ I. (2)

The constraints specify that lending on one contract cannot serve as collateral for borrowing

on another contract. Collateral must be chosen from the set of real assets.

2.2.2 Final period constraints

For simplicity, denote di (s) as the dividend for asset i in date-event s. A contract (θ, j)

borrower has the option in the final period to either repay the loan (pay the promise j) or

default and forfeit the value of collateral, where the value of collateral varies across states

s ∈ S. The default decision by borrowers determines the repayment received by lenders.
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The budget constraint in states s ∈ S captures these default decisions:

ch (s) ≤ sh +
∑
i∈I
di(s)a

h
i −

∫
(θ,j)∈∆N−1×R+

min

{
j,
∑
i∈I
θidi(s)

}
µh (d (θ, j)) . (3)

2.2.3 Equilibrium definition

An equilibrium consists of the household consumption choices
(
ch
)
h∈H , the household storage

choices
(
sh
)
h∈H , the household asset choices

(
ah
)
h∈H , the net borrowing contract measures(

µh
)
h∈H , the asset prices p, and the borrowing contract prices q such that:

1. Given the prices p and q, each household h ∈ H solves the problem:

max
ch,sh,ah,µh

Uh
(
ch
)

subject to (1), (2), and (3)
.

2. The commodity markets clear:∫
h∈H

(
ch (0) + sh

)
dh = 1.∫

h∈H
ch (s) dh =

∑
i∈I
di(s) +

∫
h∈H

shdh for all ∈ S.

3. The asset markets clear: ∫
h∈H

ahi dh = 1 for all i ∈ I. (4)

4. The markets for the borrowing contracts clear:∫
h∈H

µh+dh =

∫
h∈H

µh−dh.

3 Copulas

To introduce the concept of a copula, consider the set of economies with N = 2 assets.

The belief structures in this paper are represented by a cumulative distribution func-

tion FH1,H2 (h1, h2) with the following properties: (i) (h1, h2) ∈ [0, 1]2 and (ii) the marginal

distributions are uniformly distributed:

FH1,H2 (h1, 1) = h1.

FH1,H2 (1, h2) = h2.
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Any cumulative distribution with this property is called a copula (Sklar 1959; Nelsen 2006;

Embrechts et al. 1999; Embrechts et al. 2005; Eling and Toplek 2009).

Consider any cdf G (x1, x2) with marginal distribution functions G1 (x1) and G2 (x2) . A

copula is the cumulative distribution function C : [0, 1]2 → [0, 1] such that:

G (x1, x2) = C (G1 (x1) , G2 (x2)) .

If the marginal distributions are continuous, then C is unique (Sklar 1959). For any (h1, h2) ∈
[0, 1]2 , the copula associated with G can then be defined using the inverse distributions G−1

1

and G−1
2 :

C (h1, h2) = G
(
G−1

1 (h1) , G−1
2 (h2)

)
.

By construction, C (h1, h2) is a cdf with uniform marginal distribution functions.

3.1 Archimedean copulas

This paper focuses on copulas in the class of Archimedian copulas, which can be written in

the form

CArch (h1, h2) = ψ
(
ψ−1 (h1) + ψ−1 (h2)

)
for a generator function ψ satisfying the following properties: (i) ψ is strictly decreasing, (ii)

ψ is convex, and (iii) ψ(0) = 1. Leading examples in this class include (i) the Clayton copula,

(ii) the Frank copula, and (iii) the Joe copula.4

For values of the parameter α > 0, the Clayton copula is defined by:

CCl
α (h1, h2) =

(
h−α1 + h−α2 − 1

)−1/α
.

The generator function for the Clayton copula is ψ (x) = (1 + αx)−1/α . As α → 0, the

Clayton copula approaches the special case with independent beliefs. As α→∞, the Clayton
copula approaches the special case of perfectly dependent beliefs (also called comonotonic

beliefs).

Kendall’s tau (τ) is a measure of nonparametric rank correlation between two variables.

A Kendall’s tau value of τ = 0 indicates zero rank correlation and a value of τ = 1 indicates

perfect positive rank correlation. The Clayton parameter α is positively related to Kendall’s

4A well-known copula in this class is the Gumbel copula with cdf CGuα (h1, h2) =

exp
{
− ((− ln(h1))α + (− ln(h2))α)

1/α
}
and generator function ψ (x) = exp

(
− (x)1/α

)
. For the Gumbel

copula, the generator function is not monotonic in the parameter α, a property required for Theorem 1.
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tau:

τ =
α

2 + α
.5

For values of the parameter α > 0, the Frank copula is defined by:

CFr
α (h1, h2) = − 1

α
ln

(
1 +

(exp (−αh1)− 1) (exp (−αh2)− 1)

(exp (−α)− 1)

)
.

The generator function for the Frank copula is ψ (x) = − 1
α

ln (1 + exp (−x) (exp (−α)− 1)) .

When α → 0, the Frank copula approaches the special case with independent beliefs. As

α→∞, the Frank copula approaches the special case with comonotonic beliefs.
For values of the parameter α ≥ 1, the Joe copula is defined by:

CJoe
α (h1, h2) = 1− ((1− h1)α + (1− h2)α − (1− h1)α (1− h2)α)

1/α
.

The generator function for the Joe copula is ψ (x) = 1− (1− exp (−x))1/α .When α = 1, the

Joe copula reduces to the special case with independent beliefs. As α→∞, the Joe copula
approaches the special case with comonotonic beliefs.

The parameter α will be labeled the ’belief dependence parameter’, with higher values

signifying greater belief dependence.

3.2 Copulas in higher dimensions

Consider economies with a general number of N > 2 assets. The convenient feature about

copulas is that the two-asset marginal distributions, i.e., Pr
(
hi ≤ h∗i , hj ≤ h∗j

)
, are identical

to the cdfs from the 2-asset economies:

FH1,...,HN
(
1, ..., 1, h∗i , 1, .., 1, h

∗
j , 1, .., 1

)
= FHi,Hj

(
h∗i , h

∗
j

)
.

For Archimedean copulas, the cdf is defined by:

CArch (h1, ...., hN) = ψ
(
ψ−1 (h1) + ...+ ψ−1 (hN)

)
.

The fact that the definition includes the summation ψ−1 (h1) + ... + ψ−1 (hN) allows me to

easily generalize results from the 2-asset case to the N−asset case. To illustrate how the
definition extends, the Clayton copula in higher dimensions is given by:

CCl
α (h1, ...., hN) =

(
h−α1 + ....+ h−αN − 1

)−1/α
.

5See Clayton (1978).
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Similar extensions hold for the Frank and Joe copulas.

4 The Effects of Beliefs on Leverage

Consider any of the three copulas from the Archimedean class. The key assumption for the

results is that the cdf is differentiable and the generator function ψ is monotonic in the belief

dependence parameter α.

4.1 Belief dependence and leverage

Define the cutoff household h∗i such that the household with beliefs hi = h∗i is indifferent

between buying and selling asset i. From the first order conditions for this cutoff household:

pi = h∗i + (1− h∗i ) di. (5)

All borrowing contracts can be traded, but I assume at this time that the only ones

actually traded in equilibrium are the following: contract (1, d1) with collateral of 1 unit of

asset 1 and promise to repay d1 units, contract (2, d2) with collateral of 1 unit of asset 2 and

promise to repay d2 units, and so forth for all assets i ∈ I.
I impose this assumption. I later verify that the assumption holds in equilibrium.

Equilibrium Assumption (EA) The only contracts traded in equilibrium

are the N borrowing contracts {(1, d1) , ...., (N, dN)} and any linear combinations
of these contracts.

For simplicity, denote the household contract choices for (i, di) as bhi and the contract

price as qi. The payout of contract (i, di) is equal to di in all date-events in the final period

(a no-default loan). For all households, the first order conditions require that:

qi = di.

For simplicity, define P =
∑
i∈I
pi and D =

∑
i∈I
di.

Define Fr
{
ahi > 0

}
as the fraction of households that hold asset i. For households with

beliefs (h1, ...., hN) ≤ (h∗1, ...., h
∗
N) , the asset positions ahi = 0 for all i ∈ I. The fraction

of households with beliefs (h1, ...., hN) ≤ (h∗1, ...., h
∗
N) is equal to FH1, ..., HN (h∗1, ...., h

∗
N) .

Therefore, ∑
i∈I

Fr
{
ahi > 0

}
= 1− FH1,...,HN (h∗1, ...., h

∗
N) . (6)
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To fix ideas, consider an example with N = 2 assets. In the set of households with beliefs

(h1, h2) ≥ (h∗1, h
∗
2) , a full measure subset of households strictly prefer one asset over another.

There is a measure zero subset of households that are indifferent between the two assets.

Suppose, without loss of generality, that h∗1 ≥ h∗2. From Appendix A.1, the fraction
1
2

h∗2(1−h∗1)
h∗1(1−h∗2)

of the households with beliefs (h1, h2) ≥ (h∗1, h
∗
2) purchase only asset 1 and the remaining

households in that set choose asset 2.6

This idea extends to a general economy with N > 2 assets. A full measure subset of all

asset purchasers will purchase at most one asset. Closed-form expressions can be derived for

Fr
{
ahi > 0

}
as a function of (h∗1, ...., h

∗
N) (see Appendix A.1).

Households such that hi ≥ h∗i for some i ∈ I set ch (0) = sh = 0 in order to purchase as

many units of their preferred asset as possible.

Households with beliefs (h1, ...., hN) ≤ (h∗1, ...., h
∗
N) sell all assets to the point where the

short-sale constraints bind: ahi = 0 for all i ∈ I.
Risk-neutral households that choose to borrow will borrow up until the point that the

collateral constraint binds, as shown in the following claim.

Claim 1 If ahi > 0, then bhi = ahi .

Proof. See Section B.1.
Add up the initial period budget constraints (1) for all households with ahi > 0 :

(pi − di)
∫
ahi >0

ahi dh = Fr
{
ahi > 0

}
(1 + P ) . (7)

From the market clearing conditions (4), I obtain:

pi − di = Fr
{
ahi > 0

}
(1 + P ) . (8)

The following claim provides a necessary and suffi cient condition for h∗1 > ... > h∗N .

Claim 2 If di > dj, then h∗i > h∗j .

Proof. See Section B.2.
Using (5), the equilibrium equations (8) can be written only in terms of (h∗1, ...., h

∗
N) :

h∗i (1− di) = Fr
{
ahi > 0

}(
1 +D +

∑
i∈I
h∗i (1− di)

)
. (9)

6The measure zero subset of households that are indifferent between two or more assets are irrelevant
when we add the budget constraints over all households and apply the market clearing conditions.
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For an N−asset economy with N distinct dividends (d1, ...., dN) , the system of equations

(9) contains N equations in terms of the N unknowns (h∗1, ...., h
∗
N) .

I can now verify the Equilibrium Assumption (EA).

Claim 3 Verification of EA: All contracts (θ, j) ∈ ∆N−1×R+\ {(1, d1) , ...., (N, dN)} are ei-
ther not traded in equilibrium or are redundant to one of the contracts in the set {(1, d1) , ...., (N, dN)} .

Proof. See Section B.3.
Denote levi as the leverage ratio for asset i. The price of asset i equals pi and the loan

size is equal to the low dividend payout di. By definition,

levi =
pi

pi − di
. (10)

Using the equilibrium price equations, the leverage ratios are equivalently expressed as:

levi =
h∗i (1− di) + di
h∗i (1− di)

.

Leverage levi is strictly decreasing in h∗i . The first result analyzes how changes in the

belief dependence α affect leverage for all assets.

Theorem 1 When the cdf for household beliefs is either a Clayton, Frank, or Joe copula,
the leverage ratios for all assets are strictly increasing functions of the belief dependence α.

Proof. See Section B.4.

4.2 Financial expansion

4.2.1 Wealth effect

To analyze how the number of financial markets affects the leverage ratios, I employ the

concept of replica economies. The base economy will contain N assets with dividends

(d1, ..., dN) . The financial side of the economy is scaled up by the factor m ≥ 1, mean-

ing that there are a total of mN financial markets, m with dividends equal to d1, m with

dividends equal to d2, and so forth.

A replication of the financial side of the model leads to an equilibrium that must account

for two competing effects: (i) the wealth effect and (ii) the belief dependence effect. The

wealth effect occurs because more financial markets leads to a smaller investment of the

fixed resource (endowment) in each asset market (wealth per asset market decreases).
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The belief dependence effect refers to the cumulative distribution of household beliefs.

I can isolate the wealth effect by shutting off the belief dependence effect. To do this, I

assume that all assets with the same dividends (there are m assets with identical dividends)

have perfect belief dependence (comonotonic beliefs within this set of assets). The belief

dependence across assets with different dividends will continue to be characterized by a

copula with the belief dependence α.

Claim 2 states that all financial markets with identical dividends di have identical cutoffs

h∗i . The assumption that household beliefs are comonotonic between financial markets with

identical dividends is mathematically expressed as:

FH1,...,HmN

(−→
h1, ....,

−→
hN

)
= FH1,...,HN (h1, ...., hN) ,

where
−→
hi = (hi, ..., hi) is the m−dimensional vector representing the beliefs for all m repli-

cations of the financial market with dividend di.

The wealth effect implies a positive relation between financial expansion and leverage, as

verified by the following result.

Theorem 2 Consider a base economy with N assets and dividends (d1, ..., dN) . Consider

m ≥ 1 replications of the base economy such that FH1,...,HmN
(−→
h1, ....,

−→
hN

)
= FH1,...,HN (h1, ...., hN) .

The leverage ratios for all assets are a strictly increasing function of m.

Proof. See Section B.5.

4.2.2 Financial expansion and leverage

The isolated comparative statics for the two effects of financial expansion are very clear:

1. Holding fixed the number of assets, if the belief dependence α decreases, the leverage

ratios decrease for all assets.

2. Increasing the number of replications of the financial side of the economy, while isolat-

ing the wealth effect (shutting off the belief dependence effect), leads to higher leverage

ratios for all assets.

Following financial expansion, I maintain the belief dependence of α between all assets,

both those with the same dividends and those with different dividends.7

7The qualitative findings remain unchanged if the belief dependence between asset markets with different
dividends is smaller than the belief dependence between asset markets with identical dividends, provided
that the latter is not comonotonic. The assumption of symmetry across markets continues to be used for
simplicity.
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Total dividends after expansion equal mD. Claim 2 states that all financial markets

with identical dividends di have identical cutoffs h∗i . Define
−→
h∗i as the m−dimensional vector

(h∗i , ..., h
∗
i ) . For brevity, omit the subscripts on the cumulative distribution function. The

fraction 1− F
(−→
h∗1, , ...,

−→
h∗N

)
is the fraction of households that purchase an asset.

The total amount of equilibrium borrowing equals mD (recall Claim 1). The total com-

modity endowment in the economy equals 1. Therefore, the potential new investment equals

1 +mD. Each asset purchaser has at most 1+mD

1−F(
−→
h∗1,...,

−→
h∗N)

for investment, which can be viewed

as a measure of individual liquidity.

For all Archimedean copulas, the effects of beliefs are governed by the generator function

ψ, where F
(−→
h∗1, ...,

−→
h∗N

)
= ψ (mψ−1 (h∗1) + ...+mψ−1 (h∗N)) . Define x (m,α) = mψ−1 (h∗1) +

...+mψ−1 (h∗N) and the elasticity of the generator function ψ (x (m,α)) as

ξψ (x (m,α)) =
ψ′ (x (m,α))x (m,α)

ψ (x (m,α))
.

In words, the elasticity is defined as the percentage change in ψ (x (m,α)) relative to the

percentage change in x (m,α) . The properties characterizing Archimedean copulas guarantee

that ξψ (x (m,α)) < 0 and |ξψ (x (m,α))| is strictly increasing in x (m,α) .

To evaluate the effects of financial expansion, I evaluate the marginal effects of m when

m = 1.

Theorem 3 If 1+D

1−F(h∗1,...,h∗N)
< 1

|ξψ(x(1,α))| , then the belief dependence effect is small and fi-
nancial expansion increases the leverage ratios. If 1+D

1−F(h∗1,...,h∗N)
> 1

|ξψ(x(1,α))| , then the belief
dependence effect is large and financial expansion decreases the leverage ratios.

Proof. See Section B.6.
As α → ∞ (comonotonic beliefs), then ξψ (x (m,α)) → 0 for all m. Such beliefs are

labeled ’perfectly inelastic’beliefs. As α→∞ , then 1+D

1−F(h∗1,...,h∗N)
< 1

|ξψ(x(1,α))| and financial
expansion increases the leverage ratios.

From the proof of Theorem 1, F (h∗1, ..., h
∗
N ;α) is a strictly decreasing function of α. This

implies that 1+mD

1−F(
−→
h∗1,...,

−→
h∗N)

is strictly decreasing in α. For the Clayton, Frank, and Joe copulas,

x (m,α) is strictly decreasing in α. This implies that 1

|ξψ(x(m,α))| is strictly increasing in α.
For any m (particularly m = 1), there exists at most one cutoff value α∗ such that the

wealth effect equals the belief dependence effect: 1+D

1−F(h∗1,...,h∗N)
= 1

|ξψ(x(1,α))| . If a cutoff value
α∗ exists, then financial expansion decreases the leverage ratios for α < α∗ and increases the

leverage ratios for α > α∗.

A cutoff value α∗ > 0 is guaranteed to exist for the Clayton copula, since it has the

property that |ξψ (x (1, α))| → ∞ as α→ 0. Such beliefs are referred to as ’perfectly elastic’
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beliefs. For the Frank and Joe copula, a cutoff value may not exist. If a cutoff value does not

exist, then financial expansion increases the leverage ratios for all values of belief dependence.

The following subsection considers an example that illustrates the joint effects of belief

dependence and financial expansion on leverage.

4.2.3 A simple example

This example will demonstrate, for particular parameter values, the level of belief depen-

dence above which financial expansion increases the leverage ratios. The effects of financial

expansion on leverage will be seen in the example by comparing the m = 1 base economy to

the m = 2 expanded economy.

Consider an economy with N = 2 asset and dividends (d1, d2) = (0.3, 0.2) . Suppose the

cdf of household beliefs is governed by a Clayton copula with belief dependence parameters

α ∈
{

1
2
, 4

3
, 3, 8

}
. This corresponds to Kendall’s tau values τ ∈ {0.2, 0.4, 0.6, 0.8} , respectively.

Table I in Appendix C shows the leverage ratios for the two assets as a function of the belief

dependence parameter and the number of replications (m) of the base economy.

The theoretical results analyzed the local effect of financial expansion at m = 1. For the

example, I compare the leverage ratios before financial expansion (m = 1) and after financial

expansion (m = 2). The qualitative findings hold if I were to consider different values of m

to define "after financial expansion."

Financial expanion leads to lower leverage ratios for both assets when α ∈
{

1
2
, 4

3

}
. For

α = 3, financial expansion has a negligible effect on the leverage ratios (both ratios decrease

by a very small amount). This indicates that the cutoff value for this economy is close to

α = 3. For α = 8, financial expansion leads to an increase in the leverage ratios for both

assets.

The example illustrates that with two competing mechanisms to explain the effects of

financial expansion on leverage, the dominance of either mechanism depends on belief depen-

dence. The wealth effect is dominant for the case of α = 8, which is the closest economy to

comonotonic beliefs. The belief dependence effect is dominant for α ∈
{

1
2
, 4

3

}
as the beliefs

become less dependent and closer to independent beliefs.

5 Perfectly Dependent and Independent Beliefs

The two limits of the general copulas are the comonotonic beliefs and the independent beliefs.

Comonotonic beliefs correspond to Archimedean copulas with α → ∞. Independent beliefs
correspond to Clayton copulas with α → 0, Frank copulas with α → 0, and Joe copulas

with α = 1. Under Clayton copulas, comonotonic beliefs correspond to Kendall’s tau equal
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to 1 and independent beliefs correspond to Kendall’s tau equal 0. I provide the main results

for these two extreme cases. The cdf for comonotonic beliefs is non-differentiable, so the

equilibrium equations and results are gathered in Appendix A.3.

5.1 Comonotonic beliefs

Comonotonic beliefs means that the cumulative distribution is given by

FH1,...,HN (h1, ...., hN) = min {h1, ..., hN} .

The household beliefs satisfy hi = h1 for all i ∈ I. Assign the beliefs such that household h
has beliefs h = hi for all i ∈ I.8

Define the cutoff household h∗i such that the household with beliefs h = h∗i is indifferent

between buying and selling asset i. For comonotonic beliefs (only), the cutoff household is

identical for all assets: h∗i = h∗1 for all i ∈ I (see Appendix A.3). For simplicity, define h∗

such that h∗i = h∗ for all i ∈ I. From the first order conditions for this cutoff household:

pi = h∗ + (1− h∗) di. (11)

All borrowing contracts can be traded, but the only ones actually traded in equilibrium

are the following: contract (1, d1) with collateral of 1 unit of asset 1 and promise to repay d1

units, contract (2, d2) with collateral of 1 unit of asset 2 and promise to repay d2 units, and

so forth for all assets i ∈ I.
To illustrate the effects of asset heterogeneity, consider an economy with N = 2 assets.

The leverage ratios for varying combinations of (d1, d2) are displayed in Table II in Appendix

C. The leverage ratios are symmetric, meaning that if the dividend values are interchanged,

then the leverage ratios are interchanged as well. From Table II, I conclude that levi is

strictly increasing in di and strictly decreasing in dj, where j 6= i. Further, an increase in

d1 + d2, while holding the ratio d1
d2
fixed, leads to an increase in both leverage ratios. These

results are consistent with the fact that the wealth effects are the dominant mechanism,

namely that an increase in dividends means an increase in the wealth per asset market and

an increase in the asset prices.

The effects of expanding the financial markets are captured using the concept of replica

economies exactly as in Section 4. A replica economy is such that the number of assets

N and the total dividends D are both scaled up by the factor m ≥ 1 to create a new

8Since the marginal distributions of FH1,...,HN
(h1, ...., hN ) are uniform, then h must be drawn from a

Unif [0, 1] distribution, which is the same distribution used for the household indices.
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economy with mN assets and mD total dividends. The beliefs after replication, represented

by an mN−dimensional cdf, are comonotonic just as the original beliefs, represented by an
N−dimensional cdf, are comonotonic.

Claim 4 With comonotonic beliefs, the leverage ratios for all assets are a strictly increasing
function of m, the number of replications of the financial side of the economy.

Proof. See Appendix A.3.
This result is consistent with Theorem 3 as comonotonic beliefs imply perfectly inelastic

beliefs such that 1+D

1−F(h∗1,...,h∗N)
< 1

|ξψ(x(1,α))| .

5.2 Independent beliefs

Independent beliefs means that (h1, ...., hN) are iid random variables, all drawn from a

Unif [0, 1] distribution. Specifically, the cumulative distribution FH1,...,HN (h1, ...., hN) =

h1h2 · · · ·hN .
Consider an economy with N = 2 assets. The leverage ratios for varying combinations of

(d1, d2) are displayed in Table III in Appendix C. The leverage ratios are symmetric, meaning

that if the dividend values are interchanged, then the leverage ratios are interchanged as well.

From Table III, we conclude that levi is strictly increasing in di and strictly decreasing in

dj, where j 6= i. Further, an increase in d1 + d2, while holding the ratio d1
d2
fixed, leads to an

increase in both leverage ratios.

Comparing Tables II and III, the leverage ratios are smaller under independent beliefs

(compared to comonotonic beliefs). Further, the effects of a change in dividends are smaller

under independent beliefs (compared to comonotonic beliefs). The size of the wealth effects

is a function of the belief dependence and is smaller for independent beliefs (compared to

comonotonic beliefs).

The cdf is differentiable, meaning that equilibrium characterization is identical to the

case with copulas in Section 4. Financial expansion is defined exactly as in Section 4.

Claim 5 With independent beliefs, the leverage ratios for all assets are a strictly decreasing
function of m, the number of replications of the financial side of the economy.

Proof. Independent beliefs are defined as the limit of the Clayton copula as α → 0. Since

the Clayton copulas has the property that |ξψ (x (1, α))| → ∞ as α→ 0, then 1+D

1−F(h∗1,...,h∗N)
>

1

|ξψ(x(1,α))| and Theorem 3 implies that financial expansion decreases all leverage ratios.
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6 Concluding Remarks

This paper examined how dependent beliefs across a portfolio of financial assets impact

endogenous leverage. Increasing the dependence between beliefs leads to an increase in the

leverage ratios for all assets. Financial expansion may or may not lead to an increase in the

leverage ratios and this relation is governed by the size of the belief elasticity. When beliefs

are perfectly inelastic, financial expansion always increases the leverage ratios. When beliefs

are perfectly elastic, financial expansion always decreases the leverage ratios. The effects

of financial expansion on leverage are characterized by a cutoff value for belief dependence,

above which financial expansion increases leverage ratios and below which financial expansion

decreases leverage ratios.

If policymakers are intent on regulating leverage, understanding the mechanisms that

affect equilibrium leverage is crucial. This paper considered two possible economic primitives

to explain movements in leverage: belief dependence and the number of financial markets.

Future work seeks to quantify the size of these effects in a production economy with a longer

time horizon that allows for the possibility of leverage cycles.
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A Technical Appendix

A.1 Statistics

For simplicity, order the dividends such that d1 ≥ ... ≥ dN . Claim 2 implies h∗1 ≥ ... ≥ h∗N .

Consider an economy with N assets and focus on households with (hi, hj) ≥
(
h∗i , h

∗
j

)
and

hk < h∗k ∀k ∈ I\ {i, j} , where i < j. From Claim 1, the expected payout from only holding

asset i equals hi
h∗i
and the expected payout from only holding asset j equals hj

h∗j
. A household

with (hi, hj) ≥
(
h∗i , h

∗
j

)
therefore holds asset i only when hi

h∗i
>

hj
h∗j
and asset j only when

hi
h∗i
<

hj
h∗j
. The measure zero subset of households with hi

h∗i
=

hj
h∗j
that are indifferent between

assets i and j are irrelevant when we add the budget constraints over all households and

apply the market clearing conditions.

Define the random variable Zij =
hj
hi
. The cdf FZij (xij) = P (Zij < xij) = P

(
hj
hi
< xij

)
.

Remember that the marginal distribution for hi is the uniform distribution between h∗i and 1

and the marginal distribution for hj is the uniform distribution between h∗j and 1. Therefore,

P

(
hj
hi
< xij

)
=

∫ 1

h∗i

P

(
hj
hi
< xij|hi = y

)
dy =

∫ 1

h∗i

P (hj < xijy)
dy

1− h∗i
.

Observe that P (hj < xijy) = 1 if xijy > 1. Without loss of generality, we focus on xij ≤ 1,

meaning that P (hj < xijy) =
xijy−h∗j

1−h∗j
. This means that for xij ≤ 1 :

P

(
hj
hi
< xij

)
=

∫ 1

h∗i

xijy − h∗j
(1− h∗i )

(
1− h∗j

)dy =
1

1− h∗j

(xij
2

(1 + h∗i )− h∗j
)
.

Returning to the problem, the probability that households with (hi, hj) ≥
(
h∗i , h

∗
j

)
only hold

asset i is found by setting xij =
h∗j
h∗i

:

P

(
hj
hi
<
h∗j
h∗i

)
=

1

2

h∗j
h∗i

(1− h∗i )(
1− h∗j

) ≤ 1

2
.

The probability that households with (hi, hj) ≥
(
h∗i , h

∗
j

)
only hold asset j is equal to 1 −

1
2

h∗j
h∗i

(1−h∗i )
(1−h∗j)

≥ 1
2
. Using the law of large numbers, these probabilities are equal to fractions of

households.
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For any i < j, define ξij =
h∗j
h∗i

(1−h∗i )
(1−h∗j)

. By definition, ξij ≤ 1. For the case where the

choice is between only m = 2 assets, define
(
∆ij
i ,∆

ij
j

)
∈
{
R2 : ∆ij

i + ∆ij
j = 0

}
such that the

fraction of households with (hi, hj) ≥
(
h∗i , h

∗
j

)
that only hold asset i equals 1

2

(
1 + ∆ij

i

)
and

the fraction that only hold asset j equals 1
2

(
1 + ∆ij

j

)
. The specific values are ∆ij

i = ξij − 1

and ∆ij
j = 1− ξij.

Now focus on the choice between m = 3 assets, specifically households with (hi, hj, hk) ≥(
h∗i , h

∗
j , h
∗
k

)
and hl < h∗l ∀l ∈ I\ {i, j, k} , where i < j < k. These households only hold asset

i when hi
h∗i
> max

{
hj
h∗j
, hk
h∗k

}
. Proceeding as above:

P

(
hj
hi
< xij &

hk
hi

< xik

)
=

∫ 1

h∗i

P

(
hj
hi
< xij &

hk
hi

< xik|hi = y

)
dy

=

∫ 1

h∗i

P (hj < xijy)P (hk < xiky)
dy

1− h∗i
.

We only consider xij ≤ 1 and xik ≤ 1. The calculus simplifies to:

P

(
hj
hi
< xij &

hk
hi

< xik

)
=

xijxik
3

(
1 + h∗i + (h∗i )

2)− xijh
∗
k+xikh

∗
j

2
(1 + h∗i ) + h∗jh

∗
k(

1− h∗j
)

(1− h∗k)
.

The fraction of households that only hold asset i is found by setting xij =
h∗j
h∗i
and xik =

h∗k
h∗i

:

P

(
hj
hi
<
h∗j
h∗i
&
hk
hi

<
h∗k
h∗i

)
=

1

3

(
h∗j
h∗i

(1− h∗i )(
1− h∗j

))(h∗k
h∗i

(1− h∗i )
(1− h∗k)

)
.

Using the definition for ξij and ξik, then P
(
hj
hi
<

h∗j
h∗i
& hk

hi
<

h∗k
h∗i

)
= 1

3
ξijξik. For the case where

the choice is between onlym = 3 assets, define
(

∆ijk
i ,∆ijk

j ,∆ijk
k

)
∈
{
R3 : ∆ijk

i + ∆ijk
j + ∆ijk

k = 0
}

such that the fraction of households that only hold asset p ∈ {i, j, k} equals 1
3

(
1 + ∆ijk

p

)
.

Since P
(
hj
hi
<

h∗j
h∗i
& hk

hi
<

h∗k
h∗i

)
= 1

3
ξijξik, then ∆ijk

i = ξijξik − 1. The remaining fraction(
1− 1

3

(
1 + ∆ijk

i

))
of households either hold asset j or asset k. This reduces to the case with

a choice betweenm = 2 assets, meaning that 1
2

(
1 + ∆jk

j

)
of the fraction

(
1− 1

3

(
1 + ∆ijk

i

))
only hold asset j. Setting 1

3

(
1 + ∆ijk

j

)
equal to the fraction that only hold asset j, I

find ∆ijk
j = ∆jk

j − 1
2
∆ijk
i − 1

2
∆jk
j ∆ijk

i . The remaining households hold asset k, implying

∆ijk
k = −∆ijk

i −∆ijk
j .

The process continues by induction. Consider any 4 ≤ m ≤ N and the m−dimensional
index ijk....l. Consider households such that hp ≥ h∗p for all assets p in the index ijk....l
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and hp < h∗p for all other assets. The variable ∆ijk....l
p is defined such that the fraction of

these households that only choose asset p equals 1
m

(
1 + ∆ijk....l

p

)
. The construction of ∆ijk....l

p

proceeds by induction. The order in the index is such that i < j < k < ... < l. For the asset

i, ∆ijk....l
i = (ξij) · · · (ξil) − 1. There now remain (m − 1) terms in the index jk.....l. Of the

remaining fraction of households
(

1− 1
m

(
1 + ∆ijk....l

i

))
, the fraction 1

m−1

(
1 + ∆jk....l

j

)
hold

asset j, so ∆ijk....l
j is defined such that:

1

m

(
1 + ∆ijk....l

j

)
=

(
1− 1

m

(
1 + ∆ijk....l

i

)) 1

m− 1

(
1 + ∆jk....l

j

)
.

There now remain (m− 2) terms in the index and the process continues until values for all

variables ∆ijk....l
p are specified. By construction, −1 < ∆ijk....l

p < 1 for all ∆ terms.

A.2 Risk Aversion

A.2.1 One asset case

Consider risk-averse households. For simplicity, consider the single-asset (N = 1) case. With

risk-aversion, the cutoff household h∗ has beliefs h = h∗ and is indifferent between buying

and selling the asset. From the first order conditions for this cutoff household:

pu′
(
ch (0)

)
= h∗u′

(
ch (H)

)
+ (1− h∗)u′

(
ch (L)

)
d, (12)

where S = {H,L} , the two dividend realizations for the single asset. With indifference,
suppose h∗ is a lender. The lender holds ah = 0 units of the asset, implying that ch (H) =

ch (L) . The lender uses a combination of storage and lending to transfer resources from the

initial period t = 0 (with income 1+p) into statesH and L (with income 0). Both storage and

lending take place such that consumption is perfectly smoothed: ch (0) = ch (H) = ch (L) .

This implies that equation (12) reduces to the original:

p = h∗ + (1− h∗) d.

With only a single asset, the only collateral is this asset. The possible borrowing contracts

are j ∈ R+. The following result is identical to the Binomial No-Default Theorem of Fostel

and Geanakoplos (2015) and general results by Araujo et al. (2012). The borrowing contract

j = d is termed the no-default borrowing contract as this is the highest promise repayment

such that the borrower always repays its promised amount in all states. For all j < d, the

payout vector is identical to the borrowing contract j = d. For all j ≥ 1, the payout vector
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is identical to the asset itself (pays out 1 in state H and d in state L). For all j ∈ (d, 1) ,

the payout vector is equal to min {j, 1} = j in state H and min{j, d} = d in state L. This

is simply a convex combination of the borrowing contract j = d and the asset (the weight

θ = 1−j
1−d is placed on contract j = d and the remaining weight 1 − θ = j−d

1−d on the asset).

For any households, including risk-averse ones, any contract j ∈ R+\{d} can be traded in
equilibrium, but it will be linearly dependent, meaning that the real equilibrium variables

resulting from the trading of a contract j ∈ R+\{d} are equivalent to the real equilibrium
variables when only the no-default borrowing contract j = d is traded.

Since it is innocuous (no real effects) to assume that the only contract traded is j = d,

then I can use the budget constraints and first order conditions for h ≥ h∗, together with

market clearing conditions, to derive the remaining equilibrium equations relating p and

h∗. Under risk-neutrality, the first order condition for households h ≥ h∗ implies that they

would set ch (0) = sh = 0 in order to purchase as many units of the asset as possible. This

allowed me to pin down the asset holding ah as all initial income 1 + p is spent for asset

purchase. With risk-aversion, households h ≥ h∗ optimally choose ch (0) and sh to satisfy

budget constraints and first order conditions.

The challenge with the equilibrium characterization under risk-aversion is two-fold: (i)

more equilibrium equations (only 2 under risk-neutrality) and (ii) households h ≥ h∗ no

longer have symmetric asset holdings (as they did under risk-neutrality). With risk-neutrality,

the asset holdings for h ≥ h∗ were symmetric as they were constrained by the initial endow-

ment. With risk-aversion, the asset holdings for h ≥ h∗ are heterogeneous as they depend

upon the belief parameter h.

Notice that this result does not extend outside the binomial economy. As shown in Araujo

et al. (2012), with S > 2 possible dividend realizations, then there exists S − 1 borrowing

contracts that are linearly independent. From this finite set of borrowing contracts, the

optimal choice is a function of the degree of risk aversion.

A.2.2 Multiple asset case

With multiple assets (N ≥ 2), we can still work with the binomial economy framework as

each asset has binomial payouts and is an independent distribution. To do this, we have to

impose the following additional assumption.

Assumption A A borrowing contract is supported by the holding of one asset

as collateral. It does not matter which of the N assets are specified by the

contract, but combinations of different assets is not accepted as collateral.
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Defining the unit vector ei = (0, ...0, 1, 0, ..., 0) with ith element equal to 1, then the set

of possible collateral is θ ∈ {e1, ...., eN} . I will first show why Assumption A allows us to

extend the results from the one asset case and then discuss why combinations of collateral

θ ∈ ∆N−1\ {e1, ...., eN} are impermissible with risk aversion.
For any borrowing contract with collateral θ ∈ {e1, ...., eN} , the results from the Binomial

No-Default Theorem and the one asset case above are naturally extended and imply that

either (i) in equilibrium, only the borrowing contracts {(e1, d1) , ...., (eN , dN)} are traded or
(ii) any other equilibrium has identical real equilibrium variables as the equilibrium in which

only {(e1, d1) , ...., (eN , dN)} are traded.
Suppose, in order to understand the sticking point in the argument, that Assumption A

is not imposed. With N assets, each borrowing contract is secured with 1 total unit of asset

(our normalization) and this 1 total unit can be any combination of the N available assets.

Denote θ ∈ ∆N−1 as one of the possible combinations. For each θ, the possible borrowing

contracts are j ∈ R+.

Define #I+ as the number of elements in the set I+ = {i ∈ I :θi > 0} . Consider any
θ ∈ ∆N−1\ {e1, ...., eN} , meaning that #I+ > 1 for the contract under consideration. The

payout in any date-event s ∈ S is equal to min

{∑
i∈I
θidi(s), k

}
. Generically on θ, there are

a total of 2#I+ date-events with distinct values for
∑
i∈I
θidi(s). Even allowing for redundancy,

with#I+ > 1, the minimum number of distinct values for
∑
i∈I
θidi(s) is equal to 3 (this includes∑

i∈I
θidi and 1 and at least one value in between). With 3 or more date-events (defined in

terms of distinct payouts), we are no longer in the binomial framework. As shown in Araujo

et al. (2012), with more than 2 date-events, it is no longer the case that the no-default

loan is the only contract traded. With S date-events, there are S − 1 linearly independent

contracts that can be traded in equilibrium. This result holds for all monotonic household

preferences (including risk-aversion) as the result has nothing to do with preferences, but

only with the geometry of the payout vectors. In fuller detail, the equilibrium in which the

traded contracts are optimally chosen from the set of S − 1 linearly independent contracts

has the same values for the real equilibrium variables as any other equilibrium.

This exposition identifies the key trade-off. With risk-averse household, Assumption A

is required in order to guarantee that the equilibrium is equivalent to one in which only

no-default loans are traded. With risk-averse households and without Assumption A, equi-

librium real effects can arise from (i) default in equilibrium and (ii) multiple contracts traded

with the same collateral requirement. Future research is required in such settings in order

to fully analyze the equilibrium characterization and the belief dependence effects.
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A.3 Comonotonic Beliefs

For simplicity, denote the household contract choices for (i, di) as bhi and the contract price

as qi. The payout of contract (i, di) is equal to di in all date-events in the final period (a

no-default loan). For all households, the first order conditions require that:

qi = di.

Claim 6 Under comonotonic beliefs, h∗i = h∗1 for all i ∈ I.

Proof. Suppose, in order to obtain a contradiction, that h∗i > h∗k for some i, k. The down

payment for asset i in the initial period is pi − di. For each one unit of investment (which
allows for 1

pi−di units of the asset to be purchased), the difference between the expected

payout and the price for asset i is:

(hi + (1− hi) di)− pi
pi − di

=
hi
h∗i
− 1,

after using the definition of the cutoff (11). In similar fashion, for each one unit of investment

on asset k, the difference between the expected payout and the price is equal to:

(hk + (1− hk) dk)− pk
pk − dk

=
hk
h∗k
− 1.

Under comonotonic beliefs, h = hi = hk. For h ≥ h∗i , both differences are positive. Since

h∗i > h∗k, then the difference for asset k is larger, meaning households h ≥ h∗i only purchase

asset k.

By definition, households h < h∗i will not purchase asset i. This violates the market

clearing for asset i, since some households must be willing to purchase asset i in order to

satisfy the market clearing condition
∫
h∈Ha

h
i = 1.

For simplicity, define h∗ = h∗i for all i ∈ I.
In the initial period, households with h ≥ h∗ are indifferent about which asset to buy.

This feature is unique to comonotonic beliefs. Households h ≥ h∗ set ch (0) = sh = 0 in

order to purchase as many units of the assets as possible.

On the other side, households h < h∗ sell all assets to the point where the short-sale

constraints bind: ahi = 0 for all i ∈ I.
The collateral constraint under EA is given by:

max
{
bhi , 0

}
≤ ahi ∀i ∈ I.
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Risk-neutral households that choose to borrow will borrow up until the point that the col-

lateral constraint binds.

Claim 7 If h ≥ h∗, then bhi = ahi for all i ∈ I.

Proof. This proof is a special case of the proof of Claim 1.

Using these facts, add up the initial period budget constraints (1) for all households

h ≥ h∗ : ∑
i∈I

(pi − di)
∫ 1

h∗
ahi dh = (1− h∗)

(
1 +

∑
i∈I
pi

)
. (13)

From the market clearing condition:

∑
i∈I
pi −

∑
i∈I
di = (1− h∗)

(
1 +

∑
i∈I
pi

)
. (14)

The equilibrium equations are:

∑
i∈I
pi −

∑
i∈I
di = (1− h∗)

(
1 +

∑
i∈I
pi

)
(15)

and

pi = h∗ + (1− h∗) di ∀i ∈ I.

Define D =
∑
i∈I
di. Plug the price equations into the first equilibrium equation to obtain a

single equation in terms of the variable h∗. The single equation can be written as a quadratic

equation in the form:

(h∗)2 (N −D) + h∗ (1 +D)− (1 +D) = 0.

The equilibrium equation indicates that h∗ does not depend on the dividend distribution,

only on N and total dividends D.

Claim 8 h∗ ∈ (0, 1) .

Proof. Since di < 1 for all i ∈ I, then N > D. Using this fact, there exists a unique strictly

positive solution to the quadratic equation:

h∗ =
−(1 +D) +

√
(1 +D)2 + 4(N −D)(1 +D)

2(N −D)
.

Since N > D, it is straightforward to show that h∗ ∈ (0, 1) .
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Denote levi as the leverage ratio for asset i. The price of asset i equals pi and the loan

size is equal to the low dividend payout di. By definition,

levi =
pi

pi − di
. (16)

Using the equilibrium price equations, the leverage ratios are equivalently expressed as:

levi =
h∗ (1− di) + di
h∗ (1− di)

.

Leverage levi is strictly decreasing in h∗ and strictly increasing in di. This is verified via

the derivatives:

∂levi
∂h∗

=
−di (1− di)
[h∗ (1− di)]2

< 0.

∂levi
∂di

=
h∗

[h∗ (1− di)]2
> 0.

Theorem 4 With comonotonic beliefs, the leverage ratios for all assets are a strictly in-
creasing function of m, the number of replications of the financial side of the economy.

Proof. For the replica economies, the quadratic equation is given by

(h∗)2 (mN −mD) + h∗ (1 +mD)− (1 +mD) = 0.

Notice that if the endowment was scaled up proportionately (by m), then the wealth per

asset market would not change and the equilibrium (h∗, p) would not change. There exists

a unique strictly positive solution to the quadratic equation:

h∗ =
−(1 +mD) +

√
(1 +mD)2 + 4m(N −D)(1 +mD)

2m(N −D)
.

As before, h∗ ∈ (0, 1) . Using the quotient rule:

∂h∗

∂m
=

2(N −D)Ψ

[2m(N −D)]2
,

where

Ψ = 1 +
(1 +mD)2 − (1 +mD) + 4m(N −D)(1 +mD)− 2m(N −D)√

(1 +mD)2 + 4m(N −D)(1 +mD)

−
√

(1 +mD)2 + 4m(N −D)(1 +mD).
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Algebraically Ψ < 0 iff√
(1 +mD)2 + 4m(N −D)(1 +mD) < (1 +mD) + 2m(N −D),

where the latter strict inequality holds using the same algebra used in the proof of Claim 8.

Therefore, ∂h
∗

∂m
< 0.

In each asset market, the dividends remain unchanged. From above, ∂levi
∂h∗ < 0. Therefore,

∂levi
∂m

> 0 for all asset markets.
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B Proofs

B.1 Proof of Claim 1

For simplicity, define D =
∑
i∈I
di and P =

∑
i∈I
pi.

Households h : ahi > 0 set ch(0) = sh = 0 in order to purchase as many units of asset i as

possible. Their objective function is equal to expected consumption across all states s ∈ S.
The payout in state s ∈ S is given by

ahi di (s)− bhi di.

For s such that di (s) = 1, the payout equals ahi −bhi di. For s such that di (s) = di, the payout

equals 0. The expected consumption for households h : ahi > 0 equals

hi
(
ahi − bhi di

)
.

Define the fraction φhi such that b
h
i = φhi a

h
i . The collateral constraint requires that φ

h
i ≤ 1.

The expected consumption is therefore expressed as

hia
h
i

(
1− φhi di

)
= hia

h
i (1− di) + hia

h
i

(
1− φhi

)
di.

From the household budget constraint in the initial period:

ahi (pi − di) + ahi
(
1− φhi

)
di = 1 + P.

From (5),

pi − di = h∗i (1− di) .

The expected consumption is equal to:

hi
h∗i

(1 + P ) +

(
hi −

hi
h∗i

)
ahi
(
1− φhi

)
di.

Since hi < hi
h∗i
, then expected consumption is maximized at φhi = 1. Expected consumption

is simply hi
h∗i

(1 + P ) . Households h : ahi > 0 must be such that hi ≥ h∗i . The expected

consumption hi
h∗i

(1 + P ) is higher than what is possible through storage alone. The optimal

choice for households h : ahi > 0 is to borrow so that the collateral constraints bind on all

traded contracts.

I next verify that market clearing permits such levels of borrowing.
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In equilibrium, each household h : ahi > 0 borrows the amounts qibhi = dia
h
i . The total

amount borrowed equals ∫
h:ahi >0

dia
h
i dh.

By market clearing, the total amount borrowed by households h : ahi > 0 equals di. Across

all assets, the total amount borrowed equals D. The total amount lent must also be D.

Recall that households with beliefs (h1, ...., hN) ≤ (h∗1, ...., h
∗
N) sell all assets and become

lenders. This means that the loan size for each lender is equal to D

FH1,...,HN (h∗1,....,h∗N)
. The

income that lenders have available to lend has value 1 +P. Lenders have suffi cient resources

to lend provided that

(1 + P )FH1,...,HN (h∗1, ...., h
∗
N) > D. (17)

Add together equation (8) over all i ∈ I. The resulting equation is:

P −D =

(∑
i∈I

Fr
{
ahi > 0

})
(1 + P ) . (18)

From (6), ∑
i∈I

Fr
{
ahi > 0

}
= 1− FH1,...,HN (h∗1, ...., h

∗
N) .

Using this fact, equation (18) can be rewritten:

(1 + P )FH1,...,HN (h∗1, ...., h
∗
N) = 1 +D. (19)

Equation (19) implies that inequality (17) is satisfied.

As the market for loans is slack, all households h : ahi > 0 will borrow until the collateral

constraint binds.

B.2 Proof of Claim 2

From (5) and (8),
h∗i (1− di)
Fr
{
ahi > 0

} = 1 +D +
∑
i∈I
h∗i (1− di).

This implies that for any i, j :

h∗i (1− di)
h∗j(1− dj)

=
Fr
{
ahi > 0

}
Fr
{
ahj > 0

} . (20)
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Suppose, to construct a proof by contraposition, that h∗i ≤ h∗j . From Appendix A.1, the

fraction of households that strictly prefer asset i is larger than the fraction of households

that strictly prefer asset j : Fr
{
ahi > 0

}
≥ Fr

{
ahj > 0

}
. From equation (20), this implies:

h∗i (1− di) ≥ h∗j(1− dj).

This holds only if (1− di) ≥ (1− dj), which is equivalent to di ≤ dj.

B.3 Proof of Claim 3

Consider any asset θ ∈ ∆N−1. Define contract j∗ (θ) =
∑
i∈I
θidi. This corresponds to the

convex combination of the asset values when all assets have a low dividend realization. I will

compare the borrowing contracts (θ, j∗ (θ)) and (θ, k) for any k ∈ R+\{j∗ (θ)}.
First, let k < j∗ (θ) . The returns for contracts (θ, j∗ (θ)) and (θ, k) are equal in all date-

events s ∈ S, but borrowers are required to hold more collateral per unit borrowed under
contract (θ, k) . For this reason, they strictly prefer (θ, j∗ (θ)) .

Second, let k > j∗ (θ) . The contract (θ, j∗ (θ)) has risk-free payouts in all date-events

s ∈ S. The household first order conditions under risk-neutrality and no discounting implies
that the return equals 1 in all date-events s ∈ S.

The expected payout for household h from contract (θ, k) is denoted γh and is defined by

γh =
∑
s∈S

πh (s) min

{∑
i∈I
θidi(s), k

}
,

where di (s) is the dividend for asset i in date-event s.

By definition, the cutoff household h∗i is such that

pi = h∗i + (1− h∗i ) di.

Denote I+ = {i ∈ I :θi > 0} . Consider a household with beliefs hi = h∗i for all i ∈ I+.
This household is indifferent between buying and selling the assets i ∈ I+ and is therefore
indifferent between borrowing and lending using the contract (θ, k) . The asset price qk (θ) is

defined as the expected payout γh for the household with beliefs hi = h∗i for all i ∈ I+. This
household has expected return equal to 1, but the returns vary across date-events s ∈ S.

Under risk-neutrality, maximizing household utility is equivalent to maximizing expected

return for lenders and minimizing expected return for borrowers. Given that households have

the option of contract (θ, j∗ (θ)) with return equal to 1, households with expected payout

γh < qk (θ) would only be willing to borrow using contract (θ, k) and households with
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expected payout γh > qk (θ) would only be willing to lend using contract (θ, k) . Consider

two households (h, h′) such that h finds it optimal to borrow and h′ finds it optimal to lend.

By definition, γh < γh
′
. Household h has beliefs (h1, ..., hN) and household h′ has beliefs

(h′1, ..., h
′
N) . By definition, there exists some i ∈ I+ such that hi < h′i.

To borrow, household h must hold a portfolio of collateral with θi units of each asset

i. It is only optimal to purchase asset i if hi ≥ h∗i , so this requires that hi ≥ h∗i ∀i ∈ I+.
Combining the previous two facts, there exists some i such that h′i > h∗i . As a lender, it

is optimal for household h′ to not hold any units of asset. This contradicts that h′i > h∗i .

Thus, households with expected payout γh < qk (θ) do not borrow on contract (θ, k) and

households with expected payout γh > qk (θ) do not lend using contract (θ, k) . The contract

(θ, k) is not traded. Out of all borrowing contracts (θ, k)k∈R+ , the only contract traded is

(θ, j∗ (θ)) .

Consider the set of contracts {(1, d1) , ...., (N, dN)} and consider any contract

(θ, k) ∈ (θ, j∗ (θ))θ∈∆N−1 \ {(1, d1) , ...., (N, dN)} .

The contract (θ, j∗ (θ)) has the identical return to all contracts {(1, d1) , ...., (N, dN)} since
the payouts in all states s ∈ S are equal to j∗ (θ) , a risk-free payout. The cost of acquiring

such a portfolio of collateral is identical to the cost of acquiring a portfolio with θi units of

each asset i. Therefore, out of the set (θ, j∗ (θ))θ∈∆N−1 , there are only N linearly independent

contracts. If we specify those contracts as the unit contracts {(1, d1) , ...., (N, dN)} , then any
real equilibrium variables must be equivalent to the real variables in an equilibrium in which

only the contracts {(1, d1) , ...., (N, dN)} are traded.

B.4 Proof of Theorem 1

The proof is broken into two parts:

1. An increase in h∗−i =
(
h∗1, .., h

∗
i−1, h

∗
i+1, ..., h

∗
N

)
leads to an increase in h∗i .

2. Holding h∗−i fixed, an increase in the parameter α leads to an increase h
∗
i .

B.4.1 Part 1

Consider an economy with N ≥ 2 assets. Recall that D =
∑
p∈I
dp. Consider the equilibrium

equation (9) for asset i :

h∗i (1− di) = Fr
{
ahi > 0

}(
1 +D +

∑
p∈I
h∗p (1− dp)

)
. (21)
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Define ω1 = F (1, h∗2, ..., h
∗
N)− F (h∗1, h

∗
2, ..., h

∗
N) and similar for (ωi)i∈I\{1} . Define ω

12 =

F (1, 1, h∗3, ..., h
∗
N)− F (h∗1, h

∗
2, h
∗
3, ..., h

∗
N) and similar for (ωij)(i,j)∈I2\{(1,2)} . The order for the

superscripts does not matter, so ω12 = ω21. Continue to define all terms until ω12...N =

F (1, ..., 1)−F (h∗1, h
∗
2, ..., h

∗
N) . For any subset S ⊆ P (I) , where P (I) is the 2N−dimensional

power set of I, the fraction ωS indicates the fraction of households that will purchase an

asset from the subset S.

The fraction ωS is the fraction of households such that expected payout exceeds price for

at least one asset in S (and not for any assets in SCI ). I define the fraction ω̂
S as the fraction

of households such that the expected payout exceeds price for all assets in S (and not for

any assets in SCI ). If S contains #S assets, then the fraction ω̂S is divided into #S groups

and each household optimally chooses to hold just one of the S assets.9

Using combinatorics, the fractions ω̂ are defined as follows:

1. For all i ∈ I : ω̂i = ωi.

2. For all (i, j) ∈ I2 : ω̂ij = ωij − (ω̂i + ω̂j) .

3. For all (i, j, k) ∈ I3 : ω̂ijk = ωijk −
(
ω̂i + ω̂j + ω̂k

)
−
(
ω̂ij + ω̂ik + ω̂jk

)
.

4. For all (i, j, k, l) ∈ I4 : ω̂ijkl = ωijkl −
(
ω̂i + ω̂j + ω̂k + ω̂l

)
−
(
ω̂ij + ω̂ik + ω̂il + ω̂jk + ω̂jl + ω̂kl

)
−
(
ω̂ijk + ω̂ijl + ω̂ikl + ω̂jkl

)
.

5. The pattern continues...

It is straightforward to express the definitions for ω̂ only in terms of ω :

1. For all i ∈ I : ω̂i = ωi.

2. For all (i, j) ∈ I2 : ω̂ij = ωij − (ωi + ωj) .

3. For all (i, j, k) ∈ I3 : ω̂ijk = ωijk −
(
ωij + ωik + ωjk

)
+
(
ωi + ωj + ωk

)
.

4. For all (i, j, k, l) ∈ I4 : ω̂ijkl = ωijkl −
(
ωijk + ωijl + ωikl + ωjkl

)
+
(
ωij + ωik + ωil + ωjk + ωjl + ωkl

)
−
(
ωi + ωj + ωk + ωl

)
.

5. The pattern continues...

9As above, the fraction of households that are indifferent between multiple assets will have no weight
when the fractions of asset holders are computed.
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Using the analysis from Appendix A.1, for any i ∈ I,

F r
{
ahi > 0

}
= ω̂i +

1

2

( ∑
j∈I\{i}

(
1 + ∆ij

i

)
ω̂ij

)
+

1

3

( ∑
j∈I\{i}

∑
k∈I\{i,j}

(
1 + ∆ijk

i

)
ω̂ijk

)

+
1

4

( ∑
j∈I\{i}

∑
k∈I\{i,j}

∑
l∈I\{i,j,k}

(
1 + ∆ijkl

i

)
ω̂ijkl

)
+ ....+

1

N

(
1 + ∆12....N

i

)
ω̂12...N .

Using the expressions for ω̂ in terms of ω, the equation for Fr
{
ahi > 0

}
can be simplified:

Fr
{
ahi > 0

}
= Φi

iω
i +

( ∑
j∈I\{i}

Φij
i

(
ωij − ωj

))
+

( ∑
j∈I\{i}

∑
k∈I\{i,j}

Φijk
i

(
ωijk − ωjk

))

+

( ∑
j∈I\{i}

∑
k∈I\{i,j}

∑
l∈I\{i,j,k}

Φijkl
i

(
ωijkl − ωjkl

))
+ .....+ Φ12...N

i ω12...N .

for coeffi cients
(

Φi
i,
(
Φij
i

)
j∈I\{i} ,

(
Φijk
i

)
j,k∈I\{i}×I\{i,j}

, .....,Φ12...N
i

)
. The coeffi cients are given

by:

Φi
i = 1− 1

2

∑
j∈I\{i}

(
1 + ∆ij

i

)
+

1

3

∑
j∈I\{i}

∑
k∈I\{i,j}

(
1 + ∆ijk

i

)
− 1

4

∑
j∈I\{i}

∑
k∈I\{i,j}

∑
l∈I\{i,j,k}

(
1 + ∆ijkl

i

)
+ ....

Φij
i =

1

2

(
1 + ∆ij

i

)
− 1

3

∑
k∈I\{i,j}

(
1 + ∆ijk

i

)
+

1

4

∑
k∈I\{i,j}

∑
l∈I\{i,j,k}

(
1 + ∆ijkl

i

)
− ...

:

Φ12...N
i =

1

N

(
1 + ∆12....N

i

)
.

I will show that
(

Φi
i,
(
Φij
i

)
j∈I\{i} ,

(
Φijk
i

)
j,k∈I\{i}×I\{i,j}

, .....,Φ12...N
i

)
>> 0.

By definition,

Φ12...N
i =

1

N

(
1 + ∆12....N

i

)
> 0,

since 1
N

(
1 + ∆12....N

i

)
is the fraction of households with (h1, ...., hN) ≥ (h∗1, ...., h

∗
N) that only

purchase asset i.

In general, consider any set S ⊆ P (I) such that i ∈ S. Define m = #S as the number of
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elements in S, where 1 ≤ m < N. The term ΦS contains (N −m+ 1) terms:

ΦS
i =

1

m

(
1 + ∆S

i

)
− ...+ (−1)N−m

1

N

(
1 + ∆12....N

i

)
.

The first term is positive and includes the term 1
m

(
1 + ∆S

i

)
associated with the onlym−dimensional

set that contains S. The second term is negative and equals the summation over the

(
N −m

1

)
=

N − m terms 1
m+1

(
1 + ∆S+1

i

)
associated with the (m + 1)−dimensional subsets S+1 that

contain S. The third time is positive and equals the summation over the

(
N −m

2

)
=

(N−m)(N−m−1)
2

terms 1
m+2

(
1 + ∆S+2

i

)
associated with the (m+ 2)−dimensional subsets S+2

that contain S. The process continues. The final term is (−1)N−m 1
N

(
1 + ∆12....N

i

)
, which

is positive if (N −m + 1) is odd and negative if (N −m + 1) is even, and this represents

the only N−dimensional subset that contains S. Including all (N −m + 1) terms and the

summations within those terms, there are an equal number of positive terms and negative

terms for any 1 ≤ m < N.

When all terms ∆i = 0, then

ΦS
i =

N−m∑
p=0

(−1)N−m(−1)N−m−p

(
N −m
p

)
m+ p

=
(N −m)!

m (m+ 1) .... (N − 1) (N)
> 0. (22)

The terms ∆i are small and centered around 0. Up to a first-order approximation, the

products∆S
i ∆S′

i ≈ 0. Additionally, I define SSm+p = {S ′ ⊆ P (I) : #S ′ = m+ p and S ⊆ S ′} .
Including the terms ∆i :

ΦS
i =

(N −m)!

m (m+ 1) .... (N − 1) (N)
+

N−m∑
p=0

(−1)N−m(−1)N−m−p
∑

S′∈SSm+p

∆S′
i

m+ p
. (23)

From (22), the first term in (23) can be written as an infinite sum. Comparing terms in the

infinite sums of the updated expression for (23), a selected term in each summation would

have a value 1 in the first summation and a value ∆S′
i in the second. From Appendix A.1,∣∣∆S′

i

∣∣ < 1. Therefore, regardless of the sign for the ∆i terms, ΦS
i > 0.
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By definition, the derivative
∂Fr{ahi >0}

∂h∗z
is equal to:

∂Fr
{
ahi > 0

}
∂h∗z

= Φi
i

∂ωi

∂h∗z
+

( ∑
j∈I\{i}

Φij
i

∂ (ωij − ωj)
∂h∗z

)
+

( ∑
j∈I\{i}

∑
k∈I\{i,j}

Φijk
i

∂
(
ωijk − ωjk

)
∂h∗z

)

+

( ∑
j∈I\{i}

∑
k∈I\{i,j}

∑
l∈I\{i,j,k}

Φijkl
i

∂
(
ωijkl − ωjkl

)
∂h∗z

)
+ .....

I just showed that all coeffi cients Φi are strictly positive. I will now show that ∂ωi

∂h∗z
> 0,∑

j∈I\{i}

∂(ωij−ωj)
∂h∗z

> 0, and so forth.

Consider the partial derivative ∂ωi

∂h∗z
for any z ∈ I\{i} :

∂ωi

∂h∗z
= Fhz

(
h∗1, ..., h

∗
i−1, 1, h

∗
i+1, ..., h

∗
N

)
− Fhz

(
h∗1, ..., h

∗
i−1, h

∗
i , h
∗
i+1, ..., h

∗
N

)
.

By the definition of an Archimedean copula,

Fhz (h1, ..., hN) = ψ′

(∑
p∈I
ψ−1 (hp)

)(
ψ−1

)′
(hz) =

ψ′

(∑
p∈I
ψ−1 (hp)

)
ψ′ (ψ−1 (hz))

, (24)

where the latter expression uses the Inverse Function Theorem. Since ψ′ (·) < 0 and ψ′ is

strictly increasing, then Fhz (h1, ..., hN) ∈ (0, 1] . By definition, ψ (0) = 1, so ψ−1 (1) = 0. This

implies
∑
p∈I
ψ−1

(
h∗p
)
>

∑
p∈I\{i}

ψ−1
(
h∗p
)
. Since ψ′ is strictly increasing, then ψ′

(∑
p∈I
ψ−1

(
h∗p
))

>

ψ′

( ∑
p∈I\{i}

ψ−1
(
h∗p
))

. Since ψ′ (·) < 0, then
ψ′

∑
p∈I

ψ−1(h∗p)


ψ′(ψ−1(h∗z))

<

ψ′

 ∑
p∈I\{i}

ψ−1(h∗p)


ψ′(ψ−1(h∗z))

. By defini-

tion (24),

Fhz
(
h∗1, ..., h

∗
i−1, h

∗
i , h
∗
i+1, ..., h

∗
N

)
< Fhz

(
h∗1, ..., h

∗
i−1, 1, h

∗
i+1, ..., h

∗
N

)
.

This implies ∂ωi

∂h∗z
> 0 for any z ∈ I\{i}.

Consider the partial derivative
∂(ωij−ωj)

∂h∗z
for any z ∈ I\{i}. By definition,

ωij − ωj = F
(
h∗1, .., h

∗
i−1, 1, h

∗
i+1, .., h

∗
j−1, 1, h

∗
j+1, .., h

∗
N

)
− F

(
h∗1, .., h

∗
i−1, h

∗
i , h
∗
i+1, .., h

∗
j−1, 1, h

∗
j+1, .., h

∗
N

)
.
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The derivative

∂ (ωij − ωj)
∂h∗z

= Fhz
(
h∗1, .., h

∗
i−1, 1, h

∗
i+1, .., h

∗
j−1, 1, h

∗
j+1, .., h

∗
N

)
− Fhz

(
h∗1, .., h

∗
i−1, h

∗
i , h
∗
i+1, .., h

∗
j−1, 1, h

∗
j+1, .., h

∗
N

)
.

If z = j, then
∂(ωij−ωj)

∂h∗z
= 0 as both Fhz

(
h∗1, .., h

∗
i−1, 1, h

∗
i+1, .., h

∗
j−1, 1, h

∗
j+1, .., h

∗
N

)
= 0 and

Fhz
(
h∗1, .., h

∗
i−1, h

∗
i , h
∗
i+1, .., h

∗
j−1, 1, h

∗
j+1, .., h

∗
N

)
= 0. If z 6= j, follow the same steps as before:

(i)
∑

p∈I\{j}
ψ−1

(
h∗p
)
>

∑
p∈I\{i,j}

ψ−1
(
h∗p
)
, (ii) ψ′

( ∑
p∈I\{j}

ψ−1
(
h∗p
))

> ψ′

( ∑
p∈I\{i,j}

ψ−1
(
h∗p
))

(since ψ′ is strictly increasing), (iii)

ψ′

 ∑
p∈I\{j}

ψ−1(h∗p)


ψ′(ψ−1(h∗z))

<

ψ′

 ∑
p∈I\{i,j}

ψ−1(h∗p)


ψ′(ψ−1(h∗z))

(since ψ′ (·) < 0),

and (iv)

Fhz
(
h∗1, .., h

∗
i−1, h

∗
i , h
∗
i+1, .., h

∗
j−1, 1, h

∗
j+1, .., h

∗
N

)
< Fhz

(
h∗1, .., h

∗
i−1, 1, h

∗
i+1, .., h

∗
j−1, 1, h

∗
j+1, .., h

∗
N

)
by definition (24). This implies

∂(ωij−ωj)
∂h∗z

> 0 for any z ∈ I\{i, j}.

The pattern continues. Therefore, the derivative
∂Fr{ahi >0}

∂h∗z
> 0 for any z ∈ I\{i}.

Since Fr
{
ahi > 0

}
< 1, if (h∗z)z∈I\{i} increase, meaning all terms weakly increase with

at least one term that strictly increases, then (21) will only continue to be satisfied if h∗i
strictly increases. Therefore, an increase in h∗−i =

(
h∗1, .., h

∗
i−1, h

∗
i+1, ..., h

∗
N

)
(all terms at least

as large and at least one strictly larger) leads to a strict increase in h∗i .

B.4.2 Part 2

Defining D =
∑
p∈I
dp as before, add up the equilibrium equations (21) over all assets and use

fact (6): (
1 +D +

∑
p∈I
h∗p (1− dp)

)
F (h∗1, ..., h

∗
N ;α) = 1 +D. (25)

Write the generator function ψ both in terms of the variable x = ψ−1 (h∗1) + .... + ψ−1 (h∗N)

and in terms of the parameter α. By the definition of an Archimedean copula,

F (h∗1, ..., h
∗
N ;α) = ψ

(
ψ−1 (h∗1;α) + ....+ ψ−1 (h∗N ;α) ;α

)
.

The function ψ (x;α) has previously documented properties: (i) ψ (x;α) ≥ 0, (ii) ψx (x;α) <

0, and (iii) ψ2
x,x (x;α) ≥ 0. For the Clayton copula, ψα (x;α) > 0 and(ψ−1)α (x;α) > 0. For
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the Frank and Joe copulas, ψα (x;α) < 0 and(ψ−1)α (x;α) < 0.

Define the function

G (h∗1, ..., h
∗
N ;α) =

(
1 +D +

∑
p∈I
h∗p (1− dp)

)
F (h∗1, ..., h

∗
N ;α)− (1 +D)

such that G (h∗1, ..., h
∗
N ;α) = 0 iff equation (25) is satisfied.

Select any asset i ∈ I. The derivative

∂G

∂h∗i
= (1− di)F (h∗1, ..., h

∗
N ;α) +

(
1 +D +

∑
p∈I
h∗p (1− dp)

)
Fhi (h∗1, ..., h

∗
N ;α) .

By definition (24), Fhi (h∗1, ..., h
∗
N ;α) ∈ (0, 1] , implying ∂G

∂h∗i
> 0. The derivative

∂G

∂α
=

(
1 +D +

∑
p∈I
h∗p (1− dp)

)
Fα (h∗1, ..., h

∗
N ;α) ,

where

Fα (h∗1, ..., h
∗
N ;α) = ψα

(
ψ−1 (h∗1;α) + ....+ ψ−1 (h∗N ;α) ;α

)
·
((
ψ−1

)
α

(h∗1) + ...+
(
ψ−1

)
α

(h∗N)
)
.

Under the Clayton, Frank, and Joe copulas, Fα (h∗1, ..., h
∗
N) > 0, implying ∂G

∂α
> 0.

From the Implicit Function Thoerem

∂h∗i
∂α

= −
∂G
∂α
∂G
∂h∗i

= −(+)

(+)
< 0.

Due to symmetry and Part 1, an increase in α leads to a strict decrease in (h∗1, ..., h
∗
N) . Since

∂levi
∂h∗i

< 0 for all i ∈ I, then an increase in α will lead to a strict increase in the leverage ratios
for all assets.

B.5 Proof of Theorem 2

Consider equation (25) updated to account for replica economies:(
1 +mD +m

∑
p∈I
h∗p (1− dp)

)
F
(−→
h∗1, ...,

−→
h∗N

)
= 1 +mD. (26)
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By assumption that beliefs are comonotonic across markets with identical dividends:

F
(−→
h∗1, ...,

−→
h∗N

)
= F (h∗1, ..., h

∗
N) .

Define

G(h∗1, ..., h
∗
N ,m) =

(
1 +mD +m

∑
p∈I
h∗p (1− dp)

)
F (h∗1, ..., h

∗
N)− (1 +mD)

such thatG(h∗1, ..., h
∗
N ,m) = 0 iffequation (26) is satisfied. By the definition of an Archimedean

copula,

F (h∗1, ..., h
∗
N) = ψ

(
ψ−1 (h∗1) + ...+ ψ−1 (h∗N)

)
.

The derivative

∂G

∂h∗i
= mh∗i (1− di)F (h∗1, ..., h

∗
N) +

(
1 +mD +m

∑
p∈I
h∗p (1− dp)

)
Fhi (h∗1, ..., h

∗
N) ,

where Fhi (h∗1, ..., h
∗
N) =

ψ′(ψ−1(h∗1)+....+ψ−1(h∗N))
ψ′(ψ−1(h∗i ))

∈ (0, 1] as previously derived. This implies
∂G
∂h∗i

> 0.

The derivative

∂G

∂m
=

(
D +

∑
p∈I
h∗p (1− dp)

)
F (h∗1, ..., h

∗
N)−D.

In equilibrium, G(h∗1, ..., h
∗
N ,m) = 0 iff(

D +
∑
p∈I
h∗p (1− dp)

)
F (h∗1, ..., h

∗
N)−D =

1

m
(1− F (h∗1, ..., h

∗
N)) > 0.

Therefore, ∂G
∂m

> 0.

From the Implicit Function Theorem,

∂h∗i
∂m

= −
∂G
∂m
∂G
∂h∗i

< 0.

The same effect holds for all assets i ∈ I. An increase in m leads to a decrease in (h∗1, ..., h
∗
N) .

Since ∂levi
∂h∗i

< 0 for all i ∈ I, then an increase in m will lead to an increase in the leverage

ratios for all assets.
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B.6 Proof of Theorem 3

Define

G(h∗1, ..., h
∗
N ,m) =

(
1 +mD +m

∑
p∈I
h∗p (1− dp)

)
F
(−→
h∗1, ...,

−→
h∗N

)
− (1 +mD)

such thatG(h∗1, ..., h
∗
N ,m) = 0 iffequation (26) is satisfied. By the definition of an Archimedean

copula,

F
(−→
h∗1, ...,

−→
h∗N

)
= ψ

(
mψ−1 (h∗1) + ...+mψ−1 (h∗N)

)
.

The derivative

∂G

∂h∗i
= mh∗i (1− di)F

(−→
h∗1, ...,

−→
h∗N

)
+

(
1 +mD +m

∑
p∈I
h∗p (1− dp)

)
Fhi

(−→
h∗1, ...,

−→
h∗N

)
,

where Fhi
(−→
h∗1, ...,

−→
h∗N

)
=

ψ′(mψ−1(h∗1)+....+mψ−1(h∗N))
ψ′(mψ−1(h∗i ))

∈ (0, 1] as previously derived. This im-

plies ∂G
∂h∗i

> 0.

Define x = mψ−1 (h∗1) + ...+mψ−1 (h∗N) . The derivative

∂G

∂m
=

(
D +

∑
p∈I
h∗p (1− dp)

)
ψ (x) +

(
D +

∑
p∈I
h∗p (1− dp)

)
ψ′ (x)x+

1

m
ψ′ (x)x−D.

Using the equilibrium relation G(h∗1, ..., h
∗
N ,m) = 0 :

∂G

∂m
=

1

m
(1− ψ (x)) +

1

m
(1 +mD)

ψ′ (x)x

ψ (x)
.

From the Implicit Function Theorem,

∂h∗i
∂m

= −
∂G
∂m
∂G
∂h∗i

.

The derivative ∂h∗i
∂m

< 0 iff ∂G
∂m

> 0, which holds iff (using the definition of elasticity):

(1− ψ (x)) + (1 +mD) ξψ(x) > 0.

The derivative ∂h∗i
∂m

< 0 iff
1 +mD

1− ψ (x)
<

1

|ξψ(x)| . (27)

Since ∂levi
∂h∗i

< 0 for all i ∈ I, then ∂levi
∂m

> 0 for all i ∈ I iff (27) holds.
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C Tables and Figures

Leverage ratio are displayed for dividends (d1, d2) = (0.3, 0.2) and the Clayton copula over

a range of belief dependence values.

Belief dependence α = 1
2

α = 4
3

α = 3 α = 8

Kendall’s tau τ = 0.2 τ = 0.4 τ = 0.6 τ = 0.8

Asset 1

m = 1 1.570 1.585 1.609 1.647

m = 2 1.533 1.559 1.606 1.688

(m = 2)− (m = 1) -0.037 -0.026 -0.003 0.041

Asset 2

m = 1 1.340 1.348 1.362 1.383

m = 2 1.316 1.332 1.360 1.409

(m = 2)− (m = 1) -0.024 -0.016 -0.002 0.026

Table I: Effects of financial expansion with N = 2

Leverage ratio for asset 1 is displayed on the left and the leverage ratio for asset 2 is

displayed on the right of each cell in the following table.

d2 = 0.1 d2 = 0.2 d2 = 0.3 d2 = 0.4 d2 = 0.5

d1 = 0.1 1.203 1.203

d1 = 0.2 1.437 1.194 1.420 1.420

d1 = 0.3 1.720 1.187 1.693 1.405 1.669 1.669

d1 = 0.4 2.079 1.180 2.040 1.390 2.005 1.646 1.972 1.972

d1 = 0.5 2.561 1.173 2.507 1.377 2.457 1.625 2.410 1.940 2.366 2.366

Table II: Effects of dividends under comonotonic beliefs with N = 2

Leverage ratio for asset 1 is displayed on the left and the leverage ratio for asset 2 is displayed
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on the right of each cell in the following table.

d2 = 0.1 d2 = 0.2 d2 = 0.3 d2 = 0.4 d2 = 0.5

d1 = 0.1 1.159 1.159

d1 = 0.2 1.344 1.157 1.339 1.339

d1 = 0.3 1.568 1.154 1.561 1.335 1.555 1.555

d1 = 0.4 1.850 1.153 1.842 1.331 1.834 1.549 1.827 1.827

d1 = 0.5 2.228 1.151 2.218 1.328 2.208 1.545 2.200 1.820 2.191 2.191

Table III: Effects of dividends under independent beliefs with N = 2
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